Metamath Proof Explorer


Theorem lsmdisj2r

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmdisj.o 0 ˙ = 0 G
lsmdisjr.i φ S T ˙ U = 0 ˙
lsmdisj2r.i φ T U = 0 ˙
Assertion lsmdisj2r φ S ˙ U T = 0 ˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmdisj.o 0 ˙ = 0 G
6 lsmdisjr.i φ S T ˙ U = 0 ˙
7 lsmdisj2r.i φ T U = 0 ˙
8 eqid opp 𝑔 G = opp 𝑔 G
9 8 1 oppglsm U LSSum opp 𝑔 G S = S ˙ U
10 9 ineq2i T U LSSum opp 𝑔 G S = T S ˙ U
11 incom T S ˙ U = S ˙ U T
12 10 11 eqtri T U LSSum opp 𝑔 G S = S ˙ U T
13 eqid LSSum opp 𝑔 G = LSSum opp 𝑔 G
14 8 oppgsubg SubGrp G = SubGrp opp 𝑔 G
15 4 14 eleqtrdi φ U SubGrp opp 𝑔 G
16 3 14 eleqtrdi φ T SubGrp opp 𝑔 G
17 2 14 eleqtrdi φ S SubGrp opp 𝑔 G
18 8 5 oppgid 0 ˙ = 0 opp 𝑔 G
19 8 1 oppglsm U LSSum opp 𝑔 G T = T ˙ U
20 19 ineq1i U LSSum opp 𝑔 G T S = T ˙ U S
21 incom T ˙ U S = S T ˙ U
22 20 21 eqtri U LSSum opp 𝑔 G T S = S T ˙ U
23 22 6 eqtrid φ U LSSum opp 𝑔 G T S = 0 ˙
24 incom T U = U T
25 24 7 eqtr3id φ U T = 0 ˙
26 13 15 16 17 18 23 25 lsmdisj2 φ T U LSSum opp 𝑔 G S = 0 ˙
27 12 26 eqtr3id φ S ˙ U T = 0 ˙