Metamath Proof Explorer


Theorem lsmdisj3

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmdisj.o 0 ˙ = 0 G
lsmdisj.i φ S ˙ T U = 0 ˙
lsmdisj2.i φ S T = 0 ˙
lsmdisj3.z Z = Cntz G
lsmdisj3.s φ S Z T
Assertion lsmdisj3 φ S T ˙ U = 0 ˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmdisj.o 0 ˙ = 0 G
6 lsmdisj.i φ S ˙ T U = 0 ˙
7 lsmdisj2.i φ S T = 0 ˙
8 lsmdisj3.z Z = Cntz G
9 lsmdisj3.s φ S Z T
10 1 8 lsmcom2 S SubGrp G T SubGrp G S Z T S ˙ T = T ˙ S
11 2 3 9 10 syl3anc φ S ˙ T = T ˙ S
12 11 ineq1d φ S ˙ T U = T ˙ S U
13 12 6 eqtr3d φ T ˙ S U = 0 ˙
14 incom T S = S T
15 14 7 eqtrid φ T S = 0 ˙
16 1 3 2 4 5 13 15 lsmdisj2 φ S T ˙ U = 0 ˙