Metamath Proof Explorer


Theorem lsmdisj3a

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmdisj.o 0 ˙ = 0 G
lsmdisj3b.z Z = Cntz G
lsmdisj3a.2 φ S Z T
Assertion lsmdisj3a φ S ˙ T U = 0 ˙ S T = 0 ˙ S T ˙ U = 0 ˙ T U = 0 ˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmdisj.o 0 ˙ = 0 G
6 lsmdisj3b.z Z = Cntz G
7 lsmdisj3a.2 φ S Z T
8 1 6 lsmcom2 S SubGrp G T SubGrp G S Z T S ˙ T = T ˙ S
9 2 3 7 8 syl3anc φ S ˙ T = T ˙ S
10 9 ineq1d φ S ˙ T U = T ˙ S U
11 10 eqeq1d φ S ˙ T U = 0 ˙ T ˙ S U = 0 ˙
12 incom S T = T S
13 12 a1i φ S T = T S
14 13 eqeq1d φ S T = 0 ˙ T S = 0 ˙
15 11 14 anbi12d φ S ˙ T U = 0 ˙ S T = 0 ˙ T ˙ S U = 0 ˙ T S = 0 ˙
16 1 3 2 4 5 lsmdisj2a φ T ˙ S U = 0 ˙ T S = 0 ˙ S T ˙ U = 0 ˙ T U = 0 ˙
17 15 16 bitrd φ S ˙ T U = 0 ˙ S T = 0 ˙ S T ˙ U = 0 ˙ T U = 0 ˙