Metamath Proof Explorer


Theorem lsmdisj3r

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmdisj.o 0 ˙ = 0 G
lsmdisjr.i φ S T ˙ U = 0 ˙
lsmdisj2r.i φ T U = 0 ˙
lsmdisj3r.z Z = Cntz G
lsmdisj3r.s φ T Z U
Assertion lsmdisj3r φ S ˙ T U = 0 ˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmdisj.o 0 ˙ = 0 G
6 lsmdisjr.i φ S T ˙ U = 0 ˙
7 lsmdisj2r.i φ T U = 0 ˙
8 lsmdisj3r.z Z = Cntz G
9 lsmdisj3r.s φ T Z U
10 1 8 lsmcom2 T SubGrp G U SubGrp G T Z U T ˙ U = U ˙ T
11 3 4 9 10 syl3anc φ T ˙ U = U ˙ T
12 11 ineq2d φ S T ˙ U = S U ˙ T
13 12 6 eqtr3d φ S U ˙ T = 0 ˙
14 incom U T = T U
15 14 7 eqtrid φ U T = 0 ˙
16 1 2 4 3 5 13 15 lsmdisj2r φ S ˙ T U = 0 ˙