Step |
Hyp |
Ref |
Expression |
1 |
|
lsmelval2.v |
|
2 |
|
lsmelval2.s |
|
3 |
|
lsmelval2.p |
|
4 |
|
lsmelval2.n |
|
5 |
|
lsmelval2.w |
|
6 |
|
lsmelval2.t |
|
7 |
|
lsmelval2.u |
|
8 |
2
|
lsssubg |
|
9 |
5 6 8
|
syl2anc |
|
10 |
2
|
lsssubg |
|
11 |
5 7 10
|
syl2anc |
|
12 |
|
eqid |
|
13 |
12 3
|
lsmelval |
|
14 |
9 11 13
|
syl2anc |
|
15 |
5
|
adantr |
|
16 |
6
|
adantr |
|
17 |
|
simprl |
|
18 |
1 2
|
lssel |
|
19 |
16 17 18
|
syl2anc |
|
20 |
1 2 4
|
lspsncl |
|
21 |
15 19 20
|
syl2anc |
|
22 |
2
|
lsssubg |
|
23 |
15 21 22
|
syl2anc |
|
24 |
7
|
adantr |
|
25 |
|
simprr |
|
26 |
1 2
|
lssel |
|
27 |
24 25 26
|
syl2anc |
|
28 |
1 2 4
|
lspsncl |
|
29 |
15 27 28
|
syl2anc |
|
30 |
2
|
lsssubg |
|
31 |
15 29 30
|
syl2anc |
|
32 |
1 4
|
lspsnid |
|
33 |
15 19 32
|
syl2anc |
|
34 |
1 4
|
lspsnid |
|
35 |
15 27 34
|
syl2anc |
|
36 |
12 3
|
lsmelvali |
|
37 |
23 31 33 35 36
|
syl22anc |
|
38 |
|
eleq1a |
|
39 |
37 38
|
syl |
|
40 |
2 3
|
lsmcl |
|
41 |
15 21 29 40
|
syl3anc |
|
42 |
1 2 4 15 41
|
lspsnel6 |
|
43 |
39 42
|
sylibd |
|
44 |
43
|
reximdvva |
|
45 |
14 44
|
sylbid |
|
46 |
9
|
adantr |
|
47 |
2 4 15 16 17
|
lspsnel5a |
|
48 |
3
|
lsmless1 |
|
49 |
46 31 47 48
|
syl3anc |
|
50 |
11
|
adantr |
|
51 |
2 4 15 24 25
|
lspsnel5a |
|
52 |
3
|
lsmless2 |
|
53 |
46 50 51 52
|
syl3anc |
|
54 |
49 53
|
sstrd |
|
55 |
54
|
sseld |
|
56 |
42 55
|
sylbird |
|
57 |
56
|
rexlimdvva |
|
58 |
45 57
|
impbid |
|
59 |
|
r19.42v |
|
60 |
59
|
rexbii |
|
61 |
|
r19.42v |
|
62 |
60 61
|
bitri |
|
63 |
58 62
|
bitrdi |
|