Metamath Proof Explorer


Theorem lsmelvali

Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmelval.a + ˙ = + G
lsmelval.p ˙ = LSSum G
Assertion lsmelvali T SubGrp G U SubGrp G X T Y U X + ˙ Y T ˙ U

Proof

Step Hyp Ref Expression
1 lsmelval.a + ˙ = + G
2 lsmelval.p ˙ = LSSum G
3 subgrcl T SubGrp G G Grp
4 3 adantr T SubGrp G U SubGrp G G Grp
5 eqid Base G = Base G
6 5 subgss T SubGrp G T Base G
7 6 adantr T SubGrp G U SubGrp G T Base G
8 5 subgss U SubGrp G U Base G
9 8 adantl T SubGrp G U SubGrp G U Base G
10 4 7 9 3jca T SubGrp G U SubGrp G G Grp T Base G U Base G
11 5 1 2 lsmelvalix G Grp T Base G U Base G X T Y U X + ˙ Y T ˙ U
12 10 11 sylan T SubGrp G U SubGrp G X T Y U X + ˙ Y T ˙ U