Metamath Proof Explorer


Theorem lsmelvalix

Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmfval.v B = Base G
lsmfval.a + ˙ = + G
lsmfval.s ˙ = LSSum G
Assertion lsmelvalix G V T B U B X T Y U X + ˙ Y T ˙ U

Proof

Step Hyp Ref Expression
1 lsmfval.v B = Base G
2 lsmfval.a + ˙ = + G
3 lsmfval.s ˙ = LSSum G
4 eqid X + ˙ Y = X + ˙ Y
5 rspceov X T Y U X + ˙ Y = X + ˙ Y x T y U X + ˙ Y = x + ˙ y
6 4 5 mp3an3 X T Y U x T y U X + ˙ Y = x + ˙ y
7 1 2 3 lsmelvalx G V T B U B X + ˙ Y T ˙ U x T y U X + ˙ Y = x + ˙ y
8 7 biimpar G V T B U B x T y U X + ˙ Y = x + ˙ y X + ˙ Y T ˙ U
9 6 8 sylan2 G V T B U B X T Y U X + ˙ Y T ˙ U