Step |
Hyp |
Ref |
Expression |
1 |
|
lsmelvalm.m |
|
2 |
|
lsmelvalm.p |
|
3 |
|
lsmelvalm.t |
|
4 |
|
lsmelvalm.u |
|
5 |
|
eqid |
|
6 |
5 2
|
lsmelval |
|
7 |
3 4 6
|
syl2anc |
|
8 |
4
|
adantr |
|
9 |
|
eqid |
|
10 |
9
|
subginvcl |
|
11 |
8 10
|
sylan |
|
12 |
|
eqid |
|
13 |
|
subgrcl |
|
14 |
3 13
|
syl |
|
15 |
14
|
ad2antrr |
|
16 |
12
|
subgss |
|
17 |
3 16
|
syl |
|
18 |
17
|
sselda |
|
19 |
18
|
adantr |
|
20 |
12
|
subgss |
|
21 |
8 20
|
syl |
|
22 |
21
|
sselda |
|
23 |
12 5 1 9 15 19 22
|
grpsubinv |
|
24 |
23
|
eqcomd |
|
25 |
|
oveq2 |
|
26 |
25
|
rspceeqv |
|
27 |
11 24 26
|
syl2anc |
|
28 |
|
eqeq1 |
|
29 |
28
|
rexbidv |
|
30 |
27 29
|
syl5ibrcom |
|
31 |
30
|
rexlimdva |
|
32 |
9
|
subginvcl |
|
33 |
8 32
|
sylan |
|
34 |
18
|
adantr |
|
35 |
21
|
sselda |
|
36 |
12 5 9 1
|
grpsubval |
|
37 |
34 35 36
|
syl2anc |
|
38 |
|
oveq2 |
|
39 |
38
|
rspceeqv |
|
40 |
33 37 39
|
syl2anc |
|
41 |
|
eqeq1 |
|
42 |
41
|
rexbidv |
|
43 |
40 42
|
syl5ibrcom |
|
44 |
43
|
rexlimdva |
|
45 |
31 44
|
impbid |
|
46 |
45
|
rexbidva |
|
47 |
7 46
|
bitrd |
|