| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmelvalm.m |
|
| 2 |
|
lsmelvalm.p |
|
| 3 |
|
lsmelvalm.t |
|
| 4 |
|
lsmelvalm.u |
|
| 5 |
|
eqid |
|
| 6 |
5 2
|
lsmelval |
|
| 7 |
3 4 6
|
syl2anc |
|
| 8 |
4
|
adantr |
|
| 9 |
|
eqid |
|
| 10 |
9
|
subginvcl |
|
| 11 |
8 10
|
sylan |
|
| 12 |
|
eqid |
|
| 13 |
|
subgrcl |
|
| 14 |
3 13
|
syl |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
12
|
subgss |
|
| 17 |
3 16
|
syl |
|
| 18 |
17
|
sselda |
|
| 19 |
18
|
adantr |
|
| 20 |
12
|
subgss |
|
| 21 |
8 20
|
syl |
|
| 22 |
21
|
sselda |
|
| 23 |
12 5 1 9 15 19 22
|
grpsubinv |
|
| 24 |
23
|
eqcomd |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
rspceeqv |
|
| 27 |
11 24 26
|
syl2anc |
|
| 28 |
|
eqeq1 |
|
| 29 |
28
|
rexbidv |
|
| 30 |
27 29
|
syl5ibrcom |
|
| 31 |
30
|
rexlimdva |
|
| 32 |
9
|
subginvcl |
|
| 33 |
8 32
|
sylan |
|
| 34 |
18
|
adantr |
|
| 35 |
21
|
sselda |
|
| 36 |
12 5 9 1
|
grpsubval |
|
| 37 |
34 35 36
|
syl2anc |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
rspceeqv |
|
| 40 |
33 37 39
|
syl2anc |
|
| 41 |
|
eqeq1 |
|
| 42 |
41
|
rexbidv |
|
| 43 |
40 42
|
syl5ibrcom |
|
| 44 |
43
|
rexlimdva |
|
| 45 |
31 44
|
impbid |
|
| 46 |
45
|
rexbidva |
|
| 47 |
7 46
|
bitrd |
|