Metamath Proof Explorer


Theorem lsmelvalmi

Description: Membership of vector subtraction in subgroup sum. (Contributed by NM, 27-Apr-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmelvalm.m - ˙ = - G
lsmelvalm.p ˙ = LSSum G
lsmelvalm.t φ T SubGrp G
lsmelvalm.u φ U SubGrp G
lsmelvalmi.x φ X T
lsmelvalmi.y φ Y U
Assertion lsmelvalmi φ X - ˙ Y T ˙ U

Proof

Step Hyp Ref Expression
1 lsmelvalm.m - ˙ = - G
2 lsmelvalm.p ˙ = LSSum G
3 lsmelvalm.t φ T SubGrp G
4 lsmelvalm.u φ U SubGrp G
5 lsmelvalmi.x φ X T
6 lsmelvalmi.y φ Y U
7 eqidd φ X - ˙ Y = X - ˙ Y
8 rspceov X T Y U X - ˙ Y = X - ˙ Y x T y U X - ˙ Y = x - ˙ y
9 5 6 7 8 syl3anc φ x T y U X - ˙ Y = x - ˙ y
10 1 2 3 4 lsmelvalm φ X - ˙ Y T ˙ U x T y U X - ˙ Y = x - ˙ y
11 9 10 mpbird φ X - ˙ Y T ˙ U