Metamath Proof Explorer


Theorem lsmless1x

Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v B = Base G
lsmless2.s ˙ = LSSum G
Assertion lsmless1x G V T B U B R T R ˙ U T ˙ U

Proof

Step Hyp Ref Expression
1 lsmless2.v B = Base G
2 lsmless2.s ˙ = LSSum G
3 ssrexv R T y R z U x = y + G z y T z U x = y + G z
4 3 adantl G V T B U B R T y R z U x = y + G z y T z U x = y + G z
5 simpl1 G V T B U B R T G V
6 simpr G V T B U B R T R T
7 simpl2 G V T B U B R T T B
8 6 7 sstrd G V T B U B R T R B
9 simpl3 G V T B U B R T U B
10 eqid + G = + G
11 1 10 2 lsmelvalx G V R B U B x R ˙ U y R z U x = y + G z
12 5 8 9 11 syl3anc G V T B U B R T x R ˙ U y R z U x = y + G z
13 1 10 2 lsmelvalx G V T B U B x T ˙ U y T z U x = y + G z
14 13 adantr G V T B U B R T x T ˙ U y T z U x = y + G z
15 4 12 14 3imtr4d G V T B U B R T x R ˙ U x T ˙ U
16 15 ssrdv G V T B U B R T R ˙ U T ˙ U