Metamath Proof Explorer


Theorem lsmless2x

Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v B = Base G
lsmless2.s ˙ = LSSum G
Assertion lsmless2x G V R B U B T U R ˙ T R ˙ U

Proof

Step Hyp Ref Expression
1 lsmless2.v B = Base G
2 lsmless2.s ˙ = LSSum G
3 ssrexv T U z T x = y + G z z U x = y + G z
4 3 reximdv T U y R z T x = y + G z y R z U x = y + G z
5 4 adantl G V R B U B T U y R z T x = y + G z y R z U x = y + G z
6 simpl1 G V R B U B T U G V
7 simpl2 G V R B U B T U R B
8 simpr G V R B U B T U T U
9 simpl3 G V R B U B T U U B
10 8 9 sstrd G V R B U B T U T B
11 eqid + G = + G
12 1 11 2 lsmelvalx G V R B T B x R ˙ T y R z T x = y + G z
13 6 7 10 12 syl3anc G V R B U B T U x R ˙ T y R z T x = y + G z
14 1 11 2 lsmelvalx G V R B U B x R ˙ U y R z U x = y + G z
15 14 adantr G V R B U B T U x R ˙ U y R z U x = y + G z
16 5 13 15 3imtr4d G V R B U B T U x R ˙ T x R ˙ U
17 16 ssrdv G V R B U B T U R ˙ T R ˙ U