| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmpropd.b1 |
|
| 2 |
|
lsmpropd.b2 |
|
| 3 |
|
lsmpropd.p |
|
| 4 |
|
lsmpropd.v1 |
|
| 5 |
|
lsmpropd.v2 |
|
| 6 |
|
simp11 |
|
| 7 |
|
simp12 |
|
| 8 |
7
|
elpwid |
|
| 9 |
|
simp2 |
|
| 10 |
8 9
|
sseldd |
|
| 11 |
|
simp13 |
|
| 12 |
11
|
elpwid |
|
| 13 |
|
simp3 |
|
| 14 |
12 13
|
sseldd |
|
| 15 |
6 10 14 3
|
syl12anc |
|
| 16 |
15
|
mpoeq3dva |
|
| 17 |
16
|
rneqd |
|
| 18 |
17
|
mpoeq3dva |
|
| 19 |
1
|
pweqd |
|
| 20 |
|
mpoeq12 |
|
| 21 |
19 19 20
|
syl2anc |
|
| 22 |
2
|
pweqd |
|
| 23 |
|
mpoeq12 |
|
| 24 |
22 22 23
|
syl2anc |
|
| 25 |
18 21 24
|
3eqtr3d |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
26 27 28
|
lsmfval |
|
| 30 |
4 29
|
syl |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
31 32 33
|
lsmfval |
|
| 35 |
5 34
|
syl |
|
| 36 |
25 30 35
|
3eqtr4d |
|