Metamath Proof Explorer


Theorem lsmsp2

Description: Subspace sum of spans of subsets is the span of their union. ( spanuni analog.) (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypotheses lsmsp2.v V = Base W
lsmsp2.n N = LSpan W
lsmsp2.p ˙ = LSSum W
Assertion lsmsp2 W LMod T V U V N T ˙ N U = N T U

Proof

Step Hyp Ref Expression
1 lsmsp2.v V = Base W
2 lsmsp2.n N = LSpan W
3 lsmsp2.p ˙ = LSSum W
4 simp1 W LMod T V U V W LMod
5 eqid LSubSp W = LSubSp W
6 1 5 2 lspcl W LMod T V N T LSubSp W
7 6 3adant3 W LMod T V U V N T LSubSp W
8 1 5 2 lspcl W LMod U V N U LSubSp W
9 8 3adant2 W LMod T V U V N U LSubSp W
10 5 2 3 lsmsp W LMod N T LSubSp W N U LSubSp W N T ˙ N U = N N T N U
11 4 7 9 10 syl3anc W LMod T V U V N T ˙ N U = N N T N U
12 1 2 lspun W LMod T V U V N T U = N N T N U
13 11 12 eqtr4d W LMod T V U V N T ˙ N U = N T U