| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmspsn.v |
|
| 2 |
|
lsmspsn.a |
|
| 3 |
|
lsmspsn.f |
|
| 4 |
|
lsmspsn.k |
|
| 5 |
|
lsmspsn.t |
|
| 6 |
|
lsmspsn.p |
|
| 7 |
|
lsmspsn.n |
|
| 8 |
|
lsmspsn.w |
|
| 9 |
|
lsmspsn.x |
|
| 10 |
|
lsmspsn.y |
|
| 11 |
1 7
|
lspsnsubg |
|
| 12 |
8 9 11
|
syl2anc |
|
| 13 |
1 7
|
lspsnsubg |
|
| 14 |
8 10 13
|
syl2anc |
|
| 15 |
2 6
|
lsmelval |
|
| 16 |
12 14 15
|
syl2anc |
|
| 17 |
3 4 1 5 7
|
ellspsn |
|
| 18 |
8 9 17
|
syl2anc |
|
| 19 |
3 4 1 5 7
|
ellspsn |
|
| 20 |
8 10 19
|
syl2anc |
|
| 21 |
18 20
|
anbi12d |
|
| 22 |
21
|
biimpa |
|
| 23 |
22
|
biantrurd |
|
| 24 |
|
r19.41v |
|
| 25 |
24
|
rexbii |
|
| 26 |
|
r19.41v |
|
| 27 |
|
reeanv |
|
| 28 |
27
|
anbi1i |
|
| 29 |
25 26 28
|
3bitrri |
|
| 30 |
23 29
|
bitrdi |
|
| 31 |
30
|
2rexbidva |
|
| 32 |
|
rexrot4 |
|
| 33 |
31 32
|
bitrdi |
|
| 34 |
8
|
adantr |
|
| 35 |
|
simprl |
|
| 36 |
9
|
adantr |
|
| 37 |
1 5 3 4 7 34 35 36
|
ellspsni |
|
| 38 |
|
simprr |
|
| 39 |
10
|
adantr |
|
| 40 |
1 5 3 4 7 34 38 39
|
ellspsni |
|
| 41 |
|
oveq1 |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
42 44
|
ceqsrex2v |
|
| 46 |
37 40 45
|
syl2anc |
|
| 47 |
46
|
2rexbidva |
|
| 48 |
16 33 47
|
3bitrd |
|