Step |
Hyp |
Ref |
Expression |
1 |
|
lsmspsn.v |
|
2 |
|
lsmspsn.a |
|
3 |
|
lsmspsn.f |
|
4 |
|
lsmspsn.k |
|
5 |
|
lsmspsn.t |
|
6 |
|
lsmspsn.p |
|
7 |
|
lsmspsn.n |
|
8 |
|
lsmspsn.w |
|
9 |
|
lsmspsn.x |
|
10 |
|
lsmspsn.y |
|
11 |
1 7
|
lspsnsubg |
|
12 |
8 9 11
|
syl2anc |
|
13 |
1 7
|
lspsnsubg |
|
14 |
8 10 13
|
syl2anc |
|
15 |
2 6
|
lsmelval |
|
16 |
12 14 15
|
syl2anc |
|
17 |
3 4 1 5 7
|
lspsnel |
|
18 |
8 9 17
|
syl2anc |
|
19 |
3 4 1 5 7
|
lspsnel |
|
20 |
8 10 19
|
syl2anc |
|
21 |
18 20
|
anbi12d |
|
22 |
21
|
biimpa |
|
23 |
22
|
biantrurd |
|
24 |
|
r19.41v |
|
25 |
24
|
rexbii |
|
26 |
|
r19.41v |
|
27 |
|
reeanv |
|
28 |
27
|
anbi1i |
|
29 |
25 26 28
|
3bitrri |
|
30 |
23 29
|
bitrdi |
|
31 |
30
|
2rexbidva |
|
32 |
|
rexrot4 |
|
33 |
31 32
|
bitrdi |
|
34 |
8
|
adantr |
|
35 |
|
simprl |
|
36 |
9
|
adantr |
|
37 |
1 5 3 4 7 34 35 36
|
lspsneli |
|
38 |
|
simprr |
|
39 |
10
|
adantr |
|
40 |
1 5 3 4 7 34 38 39
|
lspsneli |
|
41 |
|
oveq1 |
|
42 |
41
|
eqeq2d |
|
43 |
|
oveq2 |
|
44 |
43
|
eqeq2d |
|
45 |
42 44
|
ceqsrex2v |
|
46 |
37 40 45
|
syl2anc |
|
47 |
46
|
2rexbidva |
|
48 |
16 33 47
|
3bitrd |
|