Metamath Proof Explorer


Theorem lsmssv

Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v B=BaseG
lsmless2.s ˙=LSSumG
Assertion lsmssv GMndTBUBT˙UB

Proof

Step Hyp Ref Expression
1 lsmless2.v B=BaseG
2 lsmless2.s ˙=LSSumG
3 eqid +G=+G
4 1 3 2 lsmvalx GMndTBUBT˙U=ranxT,yUx+Gy
5 simpl1 GMndTBUBxTyUGMnd
6 simp2 GMndTBUBTB
7 6 sselda GMndTBUBxTxB
8 7 adantrr GMndTBUBxTyUxB
9 simp3 GMndTBUBUB
10 9 sselda GMndTBUByUyB
11 10 adantrl GMndTBUBxTyUyB
12 1 3 mndcl GMndxByBx+GyB
13 5 8 11 12 syl3anc GMndTBUBxTyUx+GyB
14 13 ralrimivva GMndTBUBxTyUx+GyB
15 eqid xT,yUx+Gy=xT,yUx+Gy
16 15 fmpo xTyUx+GyBxT,yUx+Gy:T×UB
17 14 16 sylib GMndTBUBxT,yUx+Gy:T×UB
18 17 frnd GMndTBUBranxT,yUx+GyB
19 4 18 eqsstrd GMndTBUBT˙UB