Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmless2.v | |
|
| lsmless2.s | |
||
| Assertion | lsmssv | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | |
|
| 2 | lsmless2.s | |
|
| 3 | eqid | |
|
| 4 | 1 3 2 | lsmvalx | |
| 5 | simpl1 | |
|
| 6 | simp2 | |
|
| 7 | 6 | sselda | |
| 8 | 7 | adantrr | |
| 9 | simp3 | |
|
| 10 | 9 | sselda | |
| 11 | 10 | adantrl | |
| 12 | 1 3 | mndcl | |
| 13 | 5 8 11 12 | syl3anc | |
| 14 | 13 | ralrimivva | |
| 15 | eqid | |
|
| 16 | 15 | fmpo | |
| 17 | 14 16 | sylib | |
| 18 | 17 | frnd | |
| 19 | 4 18 | eqsstrd | |