Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmless2.v | |
|
lsmless2.s | |
||
Assertion | lsmssv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmless2.v | |
|
2 | lsmless2.s | |
|
3 | eqid | |
|
4 | 1 3 2 | lsmvalx | |
5 | simpl1 | |
|
6 | simp2 | |
|
7 | 6 | sselda | |
8 | 7 | adantrr | |
9 | simp3 | |
|
10 | 9 | sselda | |
11 | 10 | adantrl | |
12 | 1 3 | mndcl | |
13 | 5 8 11 12 | syl3anc | |
14 | 13 | ralrimivva | |
15 | eqid | |
|
16 | 15 | fmpo | |
17 | 14 16 | sylib | |
18 | 17 | frnd | |
19 | 4 18 | eqsstrd | |