Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsubg.p |
|
2 |
|
lsmsubg.z |
|
3 |
|
simp1 |
|
4 |
|
subgsubm |
|
5 |
3 4
|
syl |
|
6 |
|
simp2 |
|
7 |
|
subgsubm |
|
8 |
6 7
|
syl |
|
9 |
|
simp3 |
|
10 |
1 2
|
lsmsubm |
|
11 |
5 8 9 10
|
syl3anc |
|
12 |
|
eqid |
|
13 |
12 1
|
lsmelval |
|
14 |
13
|
3adant3 |
|
15 |
3
|
adantr |
|
16 |
|
subgrcl |
|
17 |
15 16
|
syl |
|
18 |
|
eqid |
|
19 |
18
|
subgss |
|
20 |
15 19
|
syl |
|
21 |
|
simprl |
|
22 |
20 21
|
sseldd |
|
23 |
6
|
adantr |
|
24 |
18
|
subgss |
|
25 |
23 24
|
syl |
|
26 |
|
simprr |
|
27 |
25 26
|
sseldd |
|
28 |
|
eqid |
|
29 |
18 12 28
|
grpinvadd |
|
30 |
17 22 27 29
|
syl3anc |
|
31 |
9
|
adantr |
|
32 |
28
|
subginvcl |
|
33 |
15 21 32
|
syl2anc |
|
34 |
31 33
|
sseldd |
|
35 |
28
|
subginvcl |
|
36 |
23 26 35
|
syl2anc |
|
37 |
12 2
|
cntzi |
|
38 |
34 36 37
|
syl2anc |
|
39 |
30 38
|
eqtr4d |
|
40 |
12 1
|
lsmelvali |
|
41 |
15 23 33 36 40
|
syl22anc |
|
42 |
39 41
|
eqeltrd |
|
43 |
|
fveq2 |
|
44 |
43
|
eleq1d |
|
45 |
42 44
|
syl5ibrcom |
|
46 |
45
|
rexlimdvva |
|
47 |
14 46
|
sylbid |
|
48 |
47
|
ralrimiv |
|
49 |
3 16
|
syl |
|
50 |
28
|
issubg3 |
|
51 |
49 50
|
syl |
|
52 |
11 48 51
|
mpbir2and |
|