| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmsubg.p |
|
| 2 |
|
lsmsubg.z |
|
| 3 |
|
simp1 |
|
| 4 |
|
subgsubm |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
simp2 |
|
| 7 |
|
subgsubm |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
simp3 |
|
| 10 |
1 2
|
lsmsubm |
|
| 11 |
5 8 9 10
|
syl3anc |
|
| 12 |
|
eqid |
|
| 13 |
12 1
|
lsmelval |
|
| 14 |
13
|
3adant3 |
|
| 15 |
3
|
adantr |
|
| 16 |
|
subgrcl |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
eqid |
|
| 19 |
18
|
subgss |
|
| 20 |
15 19
|
syl |
|
| 21 |
|
simprl |
|
| 22 |
20 21
|
sseldd |
|
| 23 |
6
|
adantr |
|
| 24 |
18
|
subgss |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
simprr |
|
| 27 |
25 26
|
sseldd |
|
| 28 |
|
eqid |
|
| 29 |
18 12 28
|
grpinvadd |
|
| 30 |
17 22 27 29
|
syl3anc |
|
| 31 |
9
|
adantr |
|
| 32 |
28
|
subginvcl |
|
| 33 |
15 21 32
|
syl2anc |
|
| 34 |
31 33
|
sseldd |
|
| 35 |
28
|
subginvcl |
|
| 36 |
23 26 35
|
syl2anc |
|
| 37 |
12 2
|
cntzi |
|
| 38 |
34 36 37
|
syl2anc |
|
| 39 |
30 38
|
eqtr4d |
|
| 40 |
12 1
|
lsmelvali |
|
| 41 |
15 23 33 36 40
|
syl22anc |
|
| 42 |
39 41
|
eqeltrd |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
eleq1d |
|
| 45 |
42 44
|
syl5ibrcom |
|
| 46 |
45
|
rexlimdvva |
|
| 47 |
14 46
|
sylbid |
|
| 48 |
47
|
ralrimiv |
|
| 49 |
3 16
|
syl |
|
| 50 |
28
|
issubg3 |
|
| 51 |
49 50
|
syl |
|
| 52 |
11 48 51
|
mpbir2and |
|