Metamath Proof Explorer


Theorem lsmsubg2

Description: The sum of two subgroups is a subgroup. (Contributed by NM, 4-Feb-2014) (Proof shortened by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmcom.s ˙ = LSSum G
Assertion lsmsubg2 G Abel T SubGrp G U SubGrp G T ˙ U SubGrp G

Proof

Step Hyp Ref Expression
1 lsmcom.s ˙ = LSSum G
2 simp2 G Abel T SubGrp G U SubGrp G T SubGrp G
3 simp3 G Abel T SubGrp G U SubGrp G U SubGrp G
4 eqid Cntz G = Cntz G
5 simp1 G Abel T SubGrp G U SubGrp G G Abel
6 4 5 2 3 ablcntzd G Abel T SubGrp G U SubGrp G T Cntz G U
7 1 4 lsmsubg T SubGrp G U SubGrp G T Cntz G U T ˙ U SubGrp G
8 2 3 6 7 syl3anc G Abel T SubGrp G U SubGrp G T ˙ U SubGrp G