Metamath Proof Explorer


Theorem lsmsubm

Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmsubg.p ˙ = LSSum G
lsmsubg.z Z = Cntz G
Assertion lsmsubm T SubMnd G U SubMnd G T Z U T ˙ U SubMnd G

Proof

Step Hyp Ref Expression
1 lsmsubg.p ˙ = LSSum G
2 lsmsubg.z Z = Cntz G
3 submrcl T SubMnd G G Mnd
4 3 3ad2ant1 T SubMnd G U SubMnd G T Z U G Mnd
5 eqid Base G = Base G
6 5 submss T SubMnd G T Base G
7 6 3ad2ant1 T SubMnd G U SubMnd G T Z U T Base G
8 5 submss U SubMnd G U Base G
9 8 3ad2ant2 T SubMnd G U SubMnd G T Z U U Base G
10 5 1 lsmssv G Mnd T Base G U Base G T ˙ U Base G
11 4 7 9 10 syl3anc T SubMnd G U SubMnd G T Z U T ˙ U Base G
12 simp2 T SubMnd G U SubMnd G T Z U U SubMnd G
13 5 1 lsmub1x T Base G U SubMnd G T T ˙ U
14 7 12 13 syl2anc T SubMnd G U SubMnd G T Z U T T ˙ U
15 eqid 0 G = 0 G
16 15 subm0cl T SubMnd G 0 G T
17 16 3ad2ant1 T SubMnd G U SubMnd G T Z U 0 G T
18 14 17 sseldd T SubMnd G U SubMnd G T Z U 0 G T ˙ U
19 eqid + G = + G
20 5 19 1 lsmelvalx G Mnd T Base G U Base G x T ˙ U a T c U x = a + G c
21 4 7 9 20 syl3anc T SubMnd G U SubMnd G T Z U x T ˙ U a T c U x = a + G c
22 5 19 1 lsmelvalx G Mnd T Base G U Base G y T ˙ U b T d U y = b + G d
23 4 7 9 22 syl3anc T SubMnd G U SubMnd G T Z U y T ˙ U b T d U y = b + G d
24 21 23 anbi12d T SubMnd G U SubMnd G T Z U x T ˙ U y T ˙ U a T c U x = a + G c b T d U y = b + G d
25 reeanv a T b T c U x = a + G c d U y = b + G d a T c U x = a + G c b T d U y = b + G d
26 reeanv c U d U x = a + G c y = b + G d c U x = a + G c d U y = b + G d
27 4 adantr T SubMnd G U SubMnd G T Z U a T b T c U d U G Mnd
28 7 adantr T SubMnd G U SubMnd G T Z U a T b T c U d U T Base G
29 simprll T SubMnd G U SubMnd G T Z U a T b T c U d U a T
30 28 29 sseldd T SubMnd G U SubMnd G T Z U a T b T c U d U a Base G
31 simprlr T SubMnd G U SubMnd G T Z U a T b T c U d U b T
32 28 31 sseldd T SubMnd G U SubMnd G T Z U a T b T c U d U b Base G
33 9 adantr T SubMnd G U SubMnd G T Z U a T b T c U d U U Base G
34 simprrl T SubMnd G U SubMnd G T Z U a T b T c U d U c U
35 33 34 sseldd T SubMnd G U SubMnd G T Z U a T b T c U d U c Base G
36 simprrr T SubMnd G U SubMnd G T Z U a T b T c U d U d U
37 33 36 sseldd T SubMnd G U SubMnd G T Z U a T b T c U d U d Base G
38 simpl3 T SubMnd G U SubMnd G T Z U a T b T c U d U T Z U
39 38 31 sseldd T SubMnd G U SubMnd G T Z U a T b T c U d U b Z U
40 19 2 cntzi b Z U c U b + G c = c + G b
41 39 34 40 syl2anc T SubMnd G U SubMnd G T Z U a T b T c U d U b + G c = c + G b
42 5 19 27 30 32 35 37 41 mnd4g T SubMnd G U SubMnd G T Z U a T b T c U d U a + G b + G c + G d = a + G c + G b + G d
43 simpl1 T SubMnd G U SubMnd G T Z U a T b T c U d U T SubMnd G
44 19 submcl T SubMnd G a T b T a + G b T
45 43 29 31 44 syl3anc T SubMnd G U SubMnd G T Z U a T b T c U d U a + G b T
46 simpl2 T SubMnd G U SubMnd G T Z U a T b T c U d U U SubMnd G
47 19 submcl U SubMnd G c U d U c + G d U
48 46 34 36 47 syl3anc T SubMnd G U SubMnd G T Z U a T b T c U d U c + G d U
49 5 19 1 lsmelvalix G Mnd T Base G U Base G a + G b T c + G d U a + G b + G c + G d T ˙ U
50 27 28 33 45 48 49 syl32anc T SubMnd G U SubMnd G T Z U a T b T c U d U a + G b + G c + G d T ˙ U
51 42 50 eqeltrrd T SubMnd G U SubMnd G T Z U a T b T c U d U a + G c + G b + G d T ˙ U
52 oveq12 x = a + G c y = b + G d x + G y = a + G c + G b + G d
53 52 eleq1d x = a + G c y = b + G d x + G y T ˙ U a + G c + G b + G d T ˙ U
54 51 53 syl5ibrcom T SubMnd G U SubMnd G T Z U a T b T c U d U x = a + G c y = b + G d x + G y T ˙ U
55 54 anassrs T SubMnd G U SubMnd G T Z U a T b T c U d U x = a + G c y = b + G d x + G y T ˙ U
56 55 rexlimdvva T SubMnd G U SubMnd G T Z U a T b T c U d U x = a + G c y = b + G d x + G y T ˙ U
57 26 56 syl5bir T SubMnd G U SubMnd G T Z U a T b T c U x = a + G c d U y = b + G d x + G y T ˙ U
58 57 rexlimdvva T SubMnd G U SubMnd G T Z U a T b T c U x = a + G c d U y = b + G d x + G y T ˙ U
59 25 58 syl5bir T SubMnd G U SubMnd G T Z U a T c U x = a + G c b T d U y = b + G d x + G y T ˙ U
60 24 59 sylbid T SubMnd G U SubMnd G T Z U x T ˙ U y T ˙ U x + G y T ˙ U
61 60 ralrimivv T SubMnd G U SubMnd G T Z U x T ˙ U y T ˙ U x + G y T ˙ U
62 5 15 19 issubm G Mnd T ˙ U SubMnd G T ˙ U Base G 0 G T ˙ U x T ˙ U y T ˙ U x + G y T ˙ U
63 4 62 syl T SubMnd G U SubMnd G T Z U T ˙ U SubMnd G T ˙ U Base G 0 G T ˙ U x T ˙ U y T ˙ U x + G y T ˙ U
64 11 18 61 63 mpbir3and T SubMnd G U SubMnd G T Z U T ˙ U SubMnd G