| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmsubg.p |
|
| 2 |
|
lsmsubg.z |
|
| 3 |
|
submrcl |
|
| 4 |
3
|
3ad2ant1 |
|
| 5 |
|
eqid |
|
| 6 |
5
|
submss |
|
| 7 |
6
|
3ad2ant1 |
|
| 8 |
5
|
submss |
|
| 9 |
8
|
3ad2ant2 |
|
| 10 |
5 1
|
lsmssv |
|
| 11 |
4 7 9 10
|
syl3anc |
|
| 12 |
|
simp2 |
|
| 13 |
5 1
|
lsmub1x |
|
| 14 |
7 12 13
|
syl2anc |
|
| 15 |
|
eqid |
|
| 16 |
15
|
subm0cl |
|
| 17 |
16
|
3ad2ant1 |
|
| 18 |
14 17
|
sseldd |
|
| 19 |
|
eqid |
|
| 20 |
5 19 1
|
lsmelvalx |
|
| 21 |
4 7 9 20
|
syl3anc |
|
| 22 |
5 19 1
|
lsmelvalx |
|
| 23 |
4 7 9 22
|
syl3anc |
|
| 24 |
21 23
|
anbi12d |
|
| 25 |
|
reeanv |
|
| 26 |
|
reeanv |
|
| 27 |
4
|
adantr |
|
| 28 |
7
|
adantr |
|
| 29 |
|
simprll |
|
| 30 |
28 29
|
sseldd |
|
| 31 |
|
simprlr |
|
| 32 |
28 31
|
sseldd |
|
| 33 |
9
|
adantr |
|
| 34 |
|
simprrl |
|
| 35 |
33 34
|
sseldd |
|
| 36 |
|
simprrr |
|
| 37 |
33 36
|
sseldd |
|
| 38 |
|
simpl3 |
|
| 39 |
38 31
|
sseldd |
|
| 40 |
19 2
|
cntzi |
|
| 41 |
39 34 40
|
syl2anc |
|
| 42 |
5 19 27 30 32 35 37 41
|
mnd4g |
|
| 43 |
|
simpl1 |
|
| 44 |
19
|
submcl |
|
| 45 |
43 29 31 44
|
syl3anc |
|
| 46 |
|
simpl2 |
|
| 47 |
19
|
submcl |
|
| 48 |
46 34 36 47
|
syl3anc |
|
| 49 |
5 19 1
|
lsmelvalix |
|
| 50 |
27 28 33 45 48 49
|
syl32anc |
|
| 51 |
42 50
|
eqeltrrd |
|
| 52 |
|
oveq12 |
|
| 53 |
52
|
eleq1d |
|
| 54 |
51 53
|
syl5ibrcom |
|
| 55 |
54
|
anassrs |
|
| 56 |
55
|
rexlimdvva |
|
| 57 |
26 56
|
biimtrrid |
|
| 58 |
57
|
rexlimdvva |
|
| 59 |
25 58
|
biimtrrid |
|
| 60 |
24 59
|
sylbid |
|
| 61 |
60
|
ralrimivv |
|
| 62 |
5 15 19
|
issubm |
|
| 63 |
4 62
|
syl |
|
| 64 |
11 18 61 63
|
mpbir3and |
|