Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsubg.p |
|
2 |
|
lsmsubg.z |
|
3 |
|
submrcl |
|
4 |
3
|
3ad2ant1 |
|
5 |
|
eqid |
|
6 |
5
|
submss |
|
7 |
6
|
3ad2ant1 |
|
8 |
5
|
submss |
|
9 |
8
|
3ad2ant2 |
|
10 |
5 1
|
lsmssv |
|
11 |
4 7 9 10
|
syl3anc |
|
12 |
|
simp2 |
|
13 |
5 1
|
lsmub1x |
|
14 |
7 12 13
|
syl2anc |
|
15 |
|
eqid |
|
16 |
15
|
subm0cl |
|
17 |
16
|
3ad2ant1 |
|
18 |
14 17
|
sseldd |
|
19 |
|
eqid |
|
20 |
5 19 1
|
lsmelvalx |
|
21 |
4 7 9 20
|
syl3anc |
|
22 |
5 19 1
|
lsmelvalx |
|
23 |
4 7 9 22
|
syl3anc |
|
24 |
21 23
|
anbi12d |
|
25 |
|
reeanv |
|
26 |
|
reeanv |
|
27 |
4
|
adantr |
|
28 |
7
|
adantr |
|
29 |
|
simprll |
|
30 |
28 29
|
sseldd |
|
31 |
|
simprlr |
|
32 |
28 31
|
sseldd |
|
33 |
9
|
adantr |
|
34 |
|
simprrl |
|
35 |
33 34
|
sseldd |
|
36 |
|
simprrr |
|
37 |
33 36
|
sseldd |
|
38 |
|
simpl3 |
|
39 |
38 31
|
sseldd |
|
40 |
19 2
|
cntzi |
|
41 |
39 34 40
|
syl2anc |
|
42 |
5 19 27 30 32 35 37 41
|
mnd4g |
|
43 |
|
simpl1 |
|
44 |
19
|
submcl |
|
45 |
43 29 31 44
|
syl3anc |
|
46 |
|
simpl2 |
|
47 |
19
|
submcl |
|
48 |
46 34 36 47
|
syl3anc |
|
49 |
5 19 1
|
lsmelvalix |
|
50 |
27 28 33 45 48 49
|
syl32anc |
|
51 |
42 50
|
eqeltrrd |
|
52 |
|
oveq12 |
|
53 |
52
|
eleq1d |
|
54 |
51 53
|
syl5ibrcom |
|
55 |
54
|
anassrs |
|
56 |
55
|
rexlimdvva |
|
57 |
26 56
|
syl5bir |
|
58 |
57
|
rexlimdvva |
|
59 |
25 58
|
syl5bir |
|
60 |
24 59
|
sylbid |
|
61 |
60
|
ralrimivv |
|
62 |
5 15 19
|
issubm |
|
63 |
4 62
|
syl |
|
64 |
11 18 61 63
|
mpbir3and |
|