Metamath Proof Explorer


Theorem lsmub1x

Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v B = Base G
lsmless2.s ˙ = LSSum G
Assertion lsmub1x T B U SubMnd G T T ˙ U

Proof

Step Hyp Ref Expression
1 lsmless2.v B = Base G
2 lsmless2.s ˙ = LSSum G
3 submrcl U SubMnd G G Mnd
4 3 ad2antlr T B U SubMnd G x T G Mnd
5 simpll T B U SubMnd G x T T B
6 simpr T B U SubMnd G x T x T
7 5 6 sseldd T B U SubMnd G x T x B
8 eqid + G = + G
9 eqid 0 G = 0 G
10 1 8 9 mndrid G Mnd x B x + G 0 G = x
11 4 7 10 syl2anc T B U SubMnd G x T x + G 0 G = x
12 1 submss U SubMnd G U B
13 12 ad2antlr T B U SubMnd G x T U B
14 9 subm0cl U SubMnd G 0 G U
15 14 ad2antlr T B U SubMnd G x T 0 G U
16 1 8 2 lsmelvalix G Mnd T B U B x T 0 G U x + G 0 G T ˙ U
17 4 5 13 6 15 16 syl32anc T B U SubMnd G x T x + G 0 G T ˙ U
18 11 17 eqeltrrd T B U SubMnd G x T x T ˙ U
19 18 ex T B U SubMnd G x T x T ˙ U
20 19 ssrdv T B U SubMnd G T T ˙ U