Metamath Proof Explorer


Theorem lsmunss

Description: Union of subgroups is a subset of subgroup sum. (Contributed by NM, 6-Feb-2014) (Proof shortened by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypothesis lsmub1.p ˙ = LSSum G
Assertion lsmunss T SubGrp G U SubGrp G T U T ˙ U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙ = LSSum G
2 1 lsmub1 T SubGrp G U SubGrp G T T ˙ U
3 1 lsmub2 T SubGrp G U SubGrp G U T ˙ U
4 2 3 unssd T SubGrp G U SubGrp G T U T ˙ U