Metamath Proof Explorer


Theorem lsmval

Description: Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmval.v B = Base G
lsmval.a + ˙ = + G
lsmval.p ˙ = LSSum G
Assertion lsmval T SubGrp G U SubGrp G T ˙ U = ran x T , y U x + ˙ y

Proof

Step Hyp Ref Expression
1 lsmval.v B = Base G
2 lsmval.a + ˙ = + G
3 lsmval.p ˙ = LSSum G
4 subgrcl T SubGrp G G Grp
5 1 subgss T SubGrp G T B
6 1 subgss U SubGrp G U B
7 1 2 3 lsmvalx G Grp T B U B T ˙ U = ran x T , y U x + ˙ y
8 4 5 6 7 syl2an3an T SubGrp G U SubGrp G T ˙ U = ran x T , y U x + ˙ y