Step |
Hyp |
Ref |
Expression |
1 |
|
lspdisj.v |
|
2 |
|
lspdisj.o |
|
3 |
|
lspdisj.n |
|
4 |
|
lspdisj.s |
|
5 |
|
lspdisj.w |
|
6 |
|
lspdisj.u |
|
7 |
|
lspdisj.x |
|
8 |
|
lspdisj.e |
|
9 |
|
lveclmod |
|
10 |
5 9
|
syl |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
11 12 1 13 3
|
lspsnel |
|
15 |
10 7 14
|
syl2anc |
|
16 |
15
|
biimpa |
|
17 |
16
|
adantrr |
|
18 |
|
simprr |
|
19 |
8
|
ad2antrr |
|
20 |
|
simplr |
|
21 |
18 20
|
eqeltrrd |
|
22 |
|
eqid |
|
23 |
5
|
ad2antrr |
|
24 |
6
|
ad2antrr |
|
25 |
7
|
ad2antrr |
|
26 |
|
simprl |
|
27 |
1 13 11 12 22 4 23 24 25 26
|
lssvs0or |
|
28 |
21 27
|
mpbid |
|
29 |
28
|
orcomd |
|
30 |
29
|
ord |
|
31 |
19 30
|
mpd |
|
32 |
31
|
oveq1d |
|
33 |
10
|
ad2antrr |
|
34 |
1 11 13 22 2
|
lmod0vs |
|
35 |
33 25 34
|
syl2anc |
|
36 |
18 32 35
|
3eqtrd |
|
37 |
36
|
exp32 |
|
38 |
37
|
adantrl |
|
39 |
38
|
rexlimdv |
|
40 |
17 39
|
mpd |
|
41 |
40
|
ex |
|
42 |
|
elin |
|
43 |
|
velsn |
|
44 |
41 42 43
|
3imtr4g |
|
45 |
44
|
ssrdv |
|
46 |
1 4 3
|
lspsncl |
|
47 |
10 7 46
|
syl2anc |
|
48 |
2 4
|
lss0ss |
|
49 |
10 47 48
|
syl2anc |
|
50 |
2 4
|
lss0ss |
|
51 |
10 6 50
|
syl2anc |
|
52 |
49 51
|
ssind |
|
53 |
45 52
|
eqssd |
|