| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspdisj2.v |
|
| 2 |
|
lspdisj2.o |
|
| 3 |
|
lspdisj2.n |
|
| 4 |
|
lspdisj2.w |
|
| 5 |
|
lspdisj2.x |
|
| 6 |
|
lspdisj2.y |
|
| 7 |
|
lspdisj2.q |
|
| 8 |
|
sneq |
|
| 9 |
8
|
fveq2d |
|
| 10 |
|
lveclmod |
|
| 11 |
4 10
|
syl |
|
| 12 |
2 3
|
lspsn0 |
|
| 13 |
11 12
|
syl |
|
| 14 |
9 13
|
sylan9eqr |
|
| 15 |
14
|
ineq1d |
|
| 16 |
|
eqid |
|
| 17 |
1 16 3
|
lspsncl |
|
| 18 |
11 6 17
|
syl2anc |
|
| 19 |
2 16
|
lss0ss |
|
| 20 |
11 18 19
|
syl2anc |
|
| 21 |
|
dfss2 |
|
| 22 |
20 21
|
sylib |
|
| 23 |
22
|
adantr |
|
| 24 |
15 23
|
eqtrd |
|
| 25 |
4
|
adantr |
|
| 26 |
18
|
adantr |
|
| 27 |
5
|
adantr |
|
| 28 |
7
|
adantr |
|
| 29 |
25
|
adantr |
|
| 30 |
6
|
adantr |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
|
simplr |
|
| 34 |
1 2 3 29 31 32 33
|
lspsneleq |
|
| 35 |
34
|
ex |
|
| 36 |
35
|
necon3ad |
|
| 37 |
28 36
|
mpd |
|
| 38 |
1 2 3 16 25 26 27 37
|
lspdisj |
|
| 39 |
24 38
|
pm2.61dane |
|