| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspexch.v |
|
| 2 |
|
lspexch.o |
|
| 3 |
|
lspexch.n |
|
| 4 |
|
lspexch.w |
|
| 5 |
|
lspexch.x |
|
| 6 |
|
lspexch.y |
|
| 7 |
|
lspexch.z |
|
| 8 |
|
lspexch.q |
|
| 9 |
|
lspexch.e |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
lveclmod |
|
| 15 |
4 14
|
syl |
|
| 16 |
1 10 11 12 13 3 15 6 7
|
lspprel |
|
| 17 |
9 16
|
mpbid |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
4
|
3ad2ant1 |
|
| 21 |
20 14
|
syl |
|
| 22 |
|
simp2r |
|
| 23 |
5
|
3ad2ant1 |
|
| 24 |
23
|
eldifad |
|
| 25 |
7
|
3ad2ant1 |
|
| 26 |
1 10 18 13 11 12 19 21 22 24 25
|
lmodsubvs |
|
| 27 |
|
simp3 |
|
| 28 |
27
|
eqcomd |
|
| 29 |
15
|
3ad2ant1 |
|
| 30 |
|
lmodgrp |
|
| 31 |
29 30
|
syl |
|
| 32 |
1 11 13 12
|
lmodvscl |
|
| 33 |
21 22 25 32
|
syl3anc |
|
| 34 |
|
simp2l |
|
| 35 |
6
|
3ad2ant1 |
|
| 36 |
1 11 13 12
|
lmodvscl |
|
| 37 |
21 34 35 36
|
syl3anc |
|
| 38 |
1 10 18
|
grpsubadd |
|
| 39 |
31 24 33 37 38
|
syl13anc |
|
| 40 |
28 39
|
mpbird |
|
| 41 |
26 40
|
eqtr3d |
|
| 42 |
|
eqid |
|
| 43 |
|
eqid |
|
| 44 |
8
|
3ad2ant1 |
|
| 45 |
20
|
adantr |
|
| 46 |
25
|
adantr |
|
| 47 |
27
|
adantr |
|
| 48 |
|
oveq1 |
|
| 49 |
48
|
oveq1d |
|
| 50 |
1 11 13 42 2
|
lmod0vs |
|
| 51 |
21 35 50
|
syl2anc |
|
| 52 |
51
|
oveq1d |
|
| 53 |
1 10 2
|
lmod0vlid |
|
| 54 |
21 33 53
|
syl2anc |
|
| 55 |
52 54
|
eqtrd |
|
| 56 |
49 55
|
sylan9eqr |
|
| 57 |
47 56
|
eqtrd |
|
| 58 |
1 13 11 12 3 21 22 25
|
ellspsni |
|
| 59 |
58
|
adantr |
|
| 60 |
57 59
|
eqeltrd |
|
| 61 |
|
eldifsni |
|
| 62 |
23 61
|
syl |
|
| 63 |
62
|
adantr |
|
| 64 |
1 2 3 45 46 60 63
|
lspsneleq |
|
| 65 |
64
|
ex |
|
| 66 |
65
|
necon3d |
|
| 67 |
44 66
|
mpd |
|
| 68 |
|
eldifsn |
|
| 69 |
34 67 68
|
sylanbrc |
|
| 70 |
11
|
lmodfgrp |
|
| 71 |
29 70
|
syl |
|
| 72 |
12 19
|
grpinvcl |
|
| 73 |
71 22 72
|
syl2anc |
|
| 74 |
1 11 13 12
|
lmodvscl |
|
| 75 |
21 73 25 74
|
syl3anc |
|
| 76 |
1 10
|
lmodvacl |
|
| 77 |
21 24 75 76
|
syl3anc |
|
| 78 |
1 13 11 12 42 43 20 69 77 35
|
lvecinv |
|
| 79 |
41 78
|
mpbid |
|
| 80 |
|
eqid |
|
| 81 |
1 80 3 21 24 25
|
lspprcl |
|
| 82 |
11
|
lvecdrng |
|
| 83 |
20 82
|
syl |
|
| 84 |
12 42 43
|
drnginvrcl |
|
| 85 |
83 34 67 84
|
syl3anc |
|
| 86 |
|
eqid |
|
| 87 |
1 11 13 86
|
lmodvs1 |
|
| 88 |
21 24 87
|
syl2anc |
|
| 89 |
88
|
oveq1d |
|
| 90 |
11
|
lmodring |
|
| 91 |
12 86
|
ringidcl |
|
| 92 |
21 90 91
|
3syl |
|
| 93 |
1 10 13 11 12 3 21 92 73 24 25
|
lsppreli |
|
| 94 |
89 93
|
eqeltrrd |
|
| 95 |
11 13 12 80
|
lssvscl |
|
| 96 |
21 81 85 94 95
|
syl22anc |
|
| 97 |
79 96
|
eqeltrd |
|
| 98 |
97
|
3exp |
|
| 99 |
98
|
rexlimdvv |
|
| 100 |
17 99
|
mpd |
|