Metamath Proof Explorer


Theorem lspexch

Description: Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 versus lspexchn2 ); look for lspexch and prcom in same proof. TODO: would a hypothesis of -. X e. ( N{ Z } ) instead of ( N{ X } ) =/= ( N{ Z } ) be better overall? This would be shorter and also satisfy the X =/= .0. condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the =/= pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses lspexch.v V = Base W
lspexch.o 0 ˙ = 0 W
lspexch.n N = LSpan W
lspexch.w φ W LVec
lspexch.x φ X V 0 ˙
lspexch.y φ Y V
lspexch.z φ Z V
lspexch.q φ N X N Z
lspexch.e φ X N Y Z
Assertion lspexch φ Y N X Z

Proof

Step Hyp Ref Expression
1 lspexch.v V = Base W
2 lspexch.o 0 ˙ = 0 W
3 lspexch.n N = LSpan W
4 lspexch.w φ W LVec
5 lspexch.x φ X V 0 ˙
6 lspexch.y φ Y V
7 lspexch.z φ Z V
8 lspexch.q φ N X N Z
9 lspexch.e φ X N Y Z
10 eqid + W = + W
11 eqid Scalar W = Scalar W
12 eqid Base Scalar W = Base Scalar W
13 eqid W = W
14 lveclmod W LVec W LMod
15 4 14 syl φ W LMod
16 1 10 11 12 13 3 15 6 7 lspprel φ X N Y Z j Base Scalar W k Base Scalar W X = j W Y + W k W Z
17 9 16 mpbid φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z
18 eqid - W = - W
19 eqid inv g Scalar W = inv g Scalar W
20 4 3ad2ant1 φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z W LVec
21 20 14 syl φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z W LMod
22 simp2r φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z k Base Scalar W
23 5 3ad2ant1 φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X V 0 ˙
24 23 eldifad φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X V
25 7 3ad2ant1 φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z Z V
26 1 10 18 13 11 12 19 21 22 24 25 lmodsubvs φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X - W k W Z = X + W inv g Scalar W k W Z
27 simp3 φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X = j W Y + W k W Z
28 27 eqcomd φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j W Y + W k W Z = X
29 15 3ad2ant1 φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z W LMod
30 lmodgrp W LMod W Grp
31 29 30 syl φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z W Grp
32 1 11 13 12 lmodvscl W LMod k Base Scalar W Z V k W Z V
33 21 22 25 32 syl3anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z k W Z V
34 simp2l φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j Base Scalar W
35 6 3ad2ant1 φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z Y V
36 1 11 13 12 lmodvscl W LMod j Base Scalar W Y V j W Y V
37 21 34 35 36 syl3anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j W Y V
38 1 10 18 grpsubadd W Grp X V k W Z V j W Y V X - W k W Z = j W Y j W Y + W k W Z = X
39 31 24 33 37 38 syl13anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X - W k W Z = j W Y j W Y + W k W Z = X
40 28 39 mpbird φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X - W k W Z = j W Y
41 26 40 eqtr3d φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X + W inv g Scalar W k W Z = j W Y
42 eqid 0 Scalar W = 0 Scalar W
43 eqid inv r Scalar W = inv r Scalar W
44 8 3ad2ant1 φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z N X N Z
45 20 adantr φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W W LVec
46 25 adantr φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W Z V
47 27 adantr φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W X = j W Y + W k W Z
48 oveq1 j = 0 Scalar W j W Y = 0 Scalar W W Y
49 48 oveq1d j = 0 Scalar W j W Y + W k W Z = 0 Scalar W W Y + W k W Z
50 1 11 13 42 2 lmod0vs W LMod Y V 0 Scalar W W Y = 0 ˙
51 21 35 50 syl2anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z 0 Scalar W W Y = 0 ˙
52 51 oveq1d φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z 0 Scalar W W Y + W k W Z = 0 ˙ + W k W Z
53 1 10 2 lmod0vlid W LMod k W Z V 0 ˙ + W k W Z = k W Z
54 21 33 53 syl2anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z 0 ˙ + W k W Z = k W Z
55 52 54 eqtrd φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z 0 Scalar W W Y + W k W Z = k W Z
56 49 55 sylan9eqr φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W j W Y + W k W Z = k W Z
57 47 56 eqtrd φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W X = k W Z
58 1 13 11 12 3 21 22 25 lspsneli φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z k W Z N Z
59 58 adantr φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W k W Z N Z
60 57 59 eqeltrd φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W X N Z
61 eldifsni X V 0 ˙ X 0 ˙
62 23 61 syl φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X 0 ˙
63 62 adantr φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W X 0 ˙
64 1 2 3 45 46 60 63 lspsneleq φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W N X = N Z
65 64 ex φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j = 0 Scalar W N X = N Z
66 65 necon3d φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z N X N Z j 0 Scalar W
67 44 66 mpd φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j 0 Scalar W
68 eldifsn j Base Scalar W 0 Scalar W j Base Scalar W j 0 Scalar W
69 34 67 68 sylanbrc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z j Base Scalar W 0 Scalar W
70 11 lmodfgrp W LMod Scalar W Grp
71 29 70 syl φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z Scalar W Grp
72 12 19 grpinvcl Scalar W Grp k Base Scalar W inv g Scalar W k Base Scalar W
73 71 22 72 syl2anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z inv g Scalar W k Base Scalar W
74 1 11 13 12 lmodvscl W LMod inv g Scalar W k Base Scalar W Z V inv g Scalar W k W Z V
75 21 73 25 74 syl3anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z inv g Scalar W k W Z V
76 1 10 lmodvacl W LMod X V inv g Scalar W k W Z V X + W inv g Scalar W k W Z V
77 21 24 75 76 syl3anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X + W inv g Scalar W k W Z V
78 1 13 11 12 42 43 20 69 77 35 lvecinv φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X + W inv g Scalar W k W Z = j W Y Y = inv r Scalar W j W X + W inv g Scalar W k W Z
79 41 78 mpbid φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z Y = inv r Scalar W j W X + W inv g Scalar W k W Z
80 eqid LSubSp W = LSubSp W
81 1 80 3 21 24 25 lspprcl φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z N X Z LSubSp W
82 11 lvecdrng W LVec Scalar W DivRing
83 20 82 syl φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z Scalar W DivRing
84 12 42 43 drnginvrcl Scalar W DivRing j Base Scalar W j 0 Scalar W inv r Scalar W j Base Scalar W
85 83 34 67 84 syl3anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z inv r Scalar W j Base Scalar W
86 eqid 1 Scalar W = 1 Scalar W
87 1 11 13 86 lmodvs1 W LMod X V 1 Scalar W W X = X
88 21 24 87 syl2anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z 1 Scalar W W X = X
89 88 oveq1d φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z 1 Scalar W W X + W inv g Scalar W k W Z = X + W inv g Scalar W k W Z
90 11 lmodring W LMod Scalar W Ring
91 12 86 ringidcl Scalar W Ring 1 Scalar W Base Scalar W
92 21 90 91 3syl φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z 1 Scalar W Base Scalar W
93 1 10 13 11 12 3 21 92 73 24 25 lsppreli φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z 1 Scalar W W X + W inv g Scalar W k W Z N X Z
94 89 93 eqeltrrd φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z X + W inv g Scalar W k W Z N X Z
95 11 13 12 80 lssvscl W LMod N X Z LSubSp W inv r Scalar W j Base Scalar W X + W inv g Scalar W k W Z N X Z inv r Scalar W j W X + W inv g Scalar W k W Z N X Z
96 21 81 85 94 95 syl22anc φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z inv r Scalar W j W X + W inv g Scalar W k W Z N X Z
97 79 96 eqeltrd φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z Y N X Z
98 97 3exp φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z Y N X Z
99 98 rexlimdvv φ j Base Scalar W k Base Scalar W X = j W Y + W k W Z Y N X Z
100 17 99 mpd φ Y N X Z