Step |
Hyp |
Ref |
Expression |
1 |
|
lspexch.v |
|
2 |
|
lspexch.o |
|
3 |
|
lspexch.n |
|
4 |
|
lspexch.w |
|
5 |
|
lspexch.x |
|
6 |
|
lspexch.y |
|
7 |
|
lspexch.z |
|
8 |
|
lspexch.q |
|
9 |
|
lspexch.e |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
lveclmod |
|
15 |
4 14
|
syl |
|
16 |
1 10 11 12 13 3 15 6 7
|
lspprel |
|
17 |
9 16
|
mpbid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
4
|
3ad2ant1 |
|
21 |
20 14
|
syl |
|
22 |
|
simp2r |
|
23 |
5
|
3ad2ant1 |
|
24 |
23
|
eldifad |
|
25 |
7
|
3ad2ant1 |
|
26 |
1 10 18 13 11 12 19 21 22 24 25
|
lmodsubvs |
|
27 |
|
simp3 |
|
28 |
27
|
eqcomd |
|
29 |
15
|
3ad2ant1 |
|
30 |
|
lmodgrp |
|
31 |
29 30
|
syl |
|
32 |
1 11 13 12
|
lmodvscl |
|
33 |
21 22 25 32
|
syl3anc |
|
34 |
|
simp2l |
|
35 |
6
|
3ad2ant1 |
|
36 |
1 11 13 12
|
lmodvscl |
|
37 |
21 34 35 36
|
syl3anc |
|
38 |
1 10 18
|
grpsubadd |
|
39 |
31 24 33 37 38
|
syl13anc |
|
40 |
28 39
|
mpbird |
|
41 |
26 40
|
eqtr3d |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
8
|
3ad2ant1 |
|
45 |
20
|
adantr |
|
46 |
25
|
adantr |
|
47 |
27
|
adantr |
|
48 |
|
oveq1 |
|
49 |
48
|
oveq1d |
|
50 |
1 11 13 42 2
|
lmod0vs |
|
51 |
21 35 50
|
syl2anc |
|
52 |
51
|
oveq1d |
|
53 |
1 10 2
|
lmod0vlid |
|
54 |
21 33 53
|
syl2anc |
|
55 |
52 54
|
eqtrd |
|
56 |
49 55
|
sylan9eqr |
|
57 |
47 56
|
eqtrd |
|
58 |
1 13 11 12 3 21 22 25
|
lspsneli |
|
59 |
58
|
adantr |
|
60 |
57 59
|
eqeltrd |
|
61 |
|
eldifsni |
|
62 |
23 61
|
syl |
|
63 |
62
|
adantr |
|
64 |
1 2 3 45 46 60 63
|
lspsneleq |
|
65 |
64
|
ex |
|
66 |
65
|
necon3d |
|
67 |
44 66
|
mpd |
|
68 |
|
eldifsn |
|
69 |
34 67 68
|
sylanbrc |
|
70 |
11
|
lmodfgrp |
|
71 |
29 70
|
syl |
|
72 |
12 19
|
grpinvcl |
|
73 |
71 22 72
|
syl2anc |
|
74 |
1 11 13 12
|
lmodvscl |
|
75 |
21 73 25 74
|
syl3anc |
|
76 |
1 10
|
lmodvacl |
|
77 |
21 24 75 76
|
syl3anc |
|
78 |
1 13 11 12 42 43 20 69 77 35
|
lvecinv |
|
79 |
41 78
|
mpbid |
|
80 |
|
eqid |
|
81 |
1 80 3 21 24 25
|
lspprcl |
|
82 |
11
|
lvecdrng |
|
83 |
20 82
|
syl |
|
84 |
12 42 43
|
drnginvrcl |
|
85 |
83 34 67 84
|
syl3anc |
|
86 |
|
eqid |
|
87 |
1 11 13 86
|
lmodvs1 |
|
88 |
21 24 87
|
syl2anc |
|
89 |
88
|
oveq1d |
|
90 |
11
|
lmodring |
|
91 |
12 86
|
ringidcl |
|
92 |
21 90 91
|
3syl |
|
93 |
1 10 13 11 12 3 21 92 73 24 25
|
lsppreli |
|
94 |
89 93
|
eqeltrrd |
|
95 |
11 13 12 80
|
lssvscl |
|
96 |
21 81 85 94 95
|
syl22anc |
|
97 |
79 96
|
eqeltrd |
|
98 |
97
|
3exp |
|
99 |
98
|
rexlimdvv |
|
100 |
17 99
|
mpd |
|