Metamath Proof Explorer


Theorem lspexchn2

Description: Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch to see if this will shorten proofs. (Contributed by NM, 24-May-2015)

Ref Expression
Hypotheses lspexchn2.v V = Base W
lspexchn2.n N = LSpan W
lspexchn2.w φ W LVec
lspexchn2.x φ X V
lspexchn2.y φ Y V
lspexchn2.z φ Z V
lspexchn2.q φ ¬ Y N Z
lspexchn2.e φ ¬ X N Z Y
Assertion lspexchn2 φ ¬ Y N Z X

Proof

Step Hyp Ref Expression
1 lspexchn2.v V = Base W
2 lspexchn2.n N = LSpan W
3 lspexchn2.w φ W LVec
4 lspexchn2.x φ X V
5 lspexchn2.y φ Y V
6 lspexchn2.z φ Z V
7 lspexchn2.q φ ¬ Y N Z
8 lspexchn2.e φ ¬ X N Z Y
9 prcom Z Y = Y Z
10 9 fveq2i N Z Y = N Y Z
11 10 eleq2i X N Z Y X N Y Z
12 8 11 sylnib φ ¬ X N Y Z
13 1 2 3 4 5 6 7 12 lspexchn1 φ ¬ Y N X Z
14 prcom X Z = Z X
15 14 fveq2i N X Z = N Z X
16 15 eleq2i Y N X Z Y N Z X
17 13 16 sylnib φ ¬ Y N Z X