Metamath Proof Explorer


Theorem lspextmo

Description: A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Hypotheses lspextmo.b B = Base S
lspextmo.k K = LSpan S
Assertion lspextmo X B K X = B * g S LMHom T g X = F

Proof

Step Hyp Ref Expression
1 lspextmo.b B = Base S
2 lspextmo.k K = LSpan S
3 eqtr3 g X = F h X = F g X = h X
4 inss1 g h g
5 dmss g h g dom g h dom g
6 4 5 ax-mp dom g h dom g
7 eqid Base T = Base T
8 1 7 lmhmf g S LMHom T g : B Base T
9 8 ad2antrl X B K X = B g S LMHom T h S LMHom T g : B Base T
10 9 ffnd X B K X = B g S LMHom T h S LMHom T g Fn B
11 10 adantrr X B K X = B g S LMHom T h S LMHom T X dom g h g Fn B
12 11 fndmd X B K X = B g S LMHom T h S LMHom T X dom g h dom g = B
13 6 12 sseqtrid X B K X = B g S LMHom T h S LMHom T X dom g h dom g h B
14 simplr X B K X = B g S LMHom T h S LMHom T X dom g h K X = B
15 lmhmlmod1 g S LMHom T S LMod
16 15 adantr g S LMHom T h S LMHom T S LMod
17 16 ad2antrl X B K X = B g S LMHom T h S LMHom T X dom g h S LMod
18 eqid LSubSp S = LSubSp S
19 18 lmhmeql g S LMHom T h S LMHom T dom g h LSubSp S
20 19 ad2antrl X B K X = B g S LMHom T h S LMHom T X dom g h dom g h LSubSp S
21 simprr X B K X = B g S LMHom T h S LMHom T X dom g h X dom g h
22 18 2 lspssp S LMod dom g h LSubSp S X dom g h K X dom g h
23 17 20 21 22 syl3anc X B K X = B g S LMHom T h S LMHom T X dom g h K X dom g h
24 14 23 eqsstrrd X B K X = B g S LMHom T h S LMHom T X dom g h B dom g h
25 13 24 eqssd X B K X = B g S LMHom T h S LMHom T X dom g h dom g h = B
26 25 expr X B K X = B g S LMHom T h S LMHom T X dom g h dom g h = B
27 simprr X B K X = B g S LMHom T h S LMHom T h S LMHom T
28 1 7 lmhmf h S LMHom T h : B Base T
29 ffn h : B Base T h Fn B
30 27 28 29 3syl X B K X = B g S LMHom T h S LMHom T h Fn B
31 simpll X B K X = B g S LMHom T h S LMHom T X B
32 fnreseql g Fn B h Fn B X B g X = h X X dom g h
33 10 30 31 32 syl3anc X B K X = B g S LMHom T h S LMHom T g X = h X X dom g h
34 fneqeql g Fn B h Fn B g = h dom g h = B
35 10 30 34 syl2anc X B K X = B g S LMHom T h S LMHom T g = h dom g h = B
36 26 33 35 3imtr4d X B K X = B g S LMHom T h S LMHom T g X = h X g = h
37 3 36 syl5 X B K X = B g S LMHom T h S LMHom T g X = F h X = F g = h
38 37 ralrimivva X B K X = B g S LMHom T h S LMHom T g X = F h X = F g = h
39 reseq1 g = h g X = h X
40 39 eqeq1d g = h g X = F h X = F
41 40 rmo4 * g S LMHom T g X = F g S LMHom T h S LMHom T g X = F h X = F g = h
42 38 41 sylibr X B K X = B * g S LMHom T g X = F