Metamath Proof Explorer


Theorem lspf

Description: The span operator on a left module maps subsets to subsets. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypotheses lspval.v V = Base W
lspval.s S = LSubSp W
lspval.n N = LSpan W
Assertion lspf W LMod N : 𝒫 V S

Proof

Step Hyp Ref Expression
1 lspval.v V = Base W
2 lspval.s S = LSubSp W
3 lspval.n N = LSpan W
4 1 2 3 lspfval W LMod N = s 𝒫 V p S | s p
5 simpl W LMod s 𝒫 V W LMod
6 ssrab2 p S | s p S
7 6 a1i W LMod s 𝒫 V p S | s p S
8 1 2 lss1 W LMod V S
9 elpwi s 𝒫 V s V
10 sseq2 p = V s p s V
11 10 rspcev V S s V p S s p
12 8 9 11 syl2an W LMod s 𝒫 V p S s p
13 rabn0 p S | s p p S s p
14 12 13 sylibr W LMod s 𝒫 V p S | s p
15 2 lssintcl W LMod p S | s p S p S | s p p S | s p S
16 5 7 14 15 syl3anc W LMod s 𝒫 V p S | s p S
17 4 16 fmpt3d W LMod N : 𝒫 V S