Metamath Proof Explorer


Theorem lspfval

Description: The span function for a left vector space (or a left module). ( df-span analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspval.v V = Base W
lspval.s S = LSubSp W
lspval.n N = LSpan W
Assertion lspfval W X N = s 𝒫 V t S | s t

Proof

Step Hyp Ref Expression
1 lspval.v V = Base W
2 lspval.s S = LSubSp W
3 lspval.n N = LSpan W
4 elex W X W V
5 fveq2 w = W Base w = Base W
6 5 1 eqtr4di w = W Base w = V
7 6 pweqd w = W 𝒫 Base w = 𝒫 V
8 fveq2 w = W LSubSp w = LSubSp W
9 8 2 eqtr4di w = W LSubSp w = S
10 9 rabeqdv w = W t LSubSp w | s t = t S | s t
11 10 inteqd w = W t LSubSp w | s t = t S | s t
12 7 11 mpteq12dv w = W s 𝒫 Base w t LSubSp w | s t = s 𝒫 V t S | s t
13 df-lsp LSpan = w V s 𝒫 Base w t LSubSp w | s t
14 1 fvexi V V
15 14 pwex 𝒫 V V
16 15 mptex s 𝒫 V t S | s t V
17 12 13 16 fvmpt W V LSpan W = s 𝒫 V t S | s t
18 4 17 syl W X LSpan W = s 𝒫 V t S | s t
19 3 18 eqtrid W X N = s 𝒫 V t S | s t