Metamath Proof Explorer


Theorem lspindp2

Description: Alternate way to say 3 vectors are mutually independent (rotate right). (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses lspindp1.v V = Base W
lspindp1.o 0 ˙ = 0 W
lspindp1.n N = LSpan W
lspindp1.w φ W LVec
lspindp2.x φ X V
lspindp2.y φ Y V 0 ˙
lspindp2.z φ Z V
lspindp2.q φ N X N Y
lspindp2.e φ ¬ Z N X Y
Assertion lspindp2 φ N Z N X ¬ Y N Z X

Proof

Step Hyp Ref Expression
1 lspindp1.v V = Base W
2 lspindp1.o 0 ˙ = 0 W
3 lspindp1.n N = LSpan W
4 lspindp1.w φ W LVec
5 lspindp2.x φ X V
6 lspindp2.y φ Y V 0 ˙
7 lspindp2.z φ Z V
8 lspindp2.q φ N X N Y
9 lspindp2.e φ ¬ Z N X Y
10 8 necomd φ N Y N X
11 prcom X Y = Y X
12 11 fveq2i N X Y = N Y X
13 12 eleq2i Z N X Y Z N Y X
14 9 13 sylnib φ ¬ Z N Y X
15 1 2 3 4 6 5 7 10 14 lspindp1 φ N Z N X ¬ Y N Z X