Metamath Proof Explorer


Theorem lspindp2l

Description: Alternate way to say 3 vectors are mutually independent (rotate left). (Contributed by NM, 10-May-2015)

Ref Expression
Hypotheses lspindp1.v V = Base W
lspindp1.o 0 ˙ = 0 W
lspindp1.n N = LSpan W
lspindp1.w φ W LVec
lspindp1.y φ X V 0 ˙
lspindp1.z φ Y V
lspindp1.x φ Z V
lspindp1.q φ N X N Y
lspindp1.e φ ¬ Z N X Y
Assertion lspindp2l φ N Y N Z ¬ X N Y Z

Proof

Step Hyp Ref Expression
1 lspindp1.v V = Base W
2 lspindp1.o 0 ˙ = 0 W
3 lspindp1.n N = LSpan W
4 lspindp1.w φ W LVec
5 lspindp1.y φ X V 0 ˙
6 lspindp1.z φ Y V
7 lspindp1.x φ Z V
8 lspindp1.q φ N X N Y
9 lspindp1.e φ ¬ Z N X Y
10 1 2 3 4 5 6 7 8 9 lspindp1 φ N Z N Y ¬ X N Z Y
11 10 simpld φ N Z N Y
12 11 necomd φ N Y N Z
13 10 simprd φ ¬ X N Z Y
14 prcom Z Y = Y Z
15 14 fveq2i N Z Y = N Y Z
16 15 eleq2i X N Z Y X N Y Z
17 13 16 sylnib φ ¬ X N Y Z
18 12 17 jca φ N Y N Z ¬ X N Y Z