Database
BASIC ALGEBRAIC STRUCTURES
Vector spaces
Definition and basic properties
lspindp3
Next ⟩
lspindp4
Metamath Proof Explorer
Ascii
Unicode
Theorem
lspindp3
Description:
Independence of 2 vectors is preserved by vector sum.
(Contributed by
NM
, 26-Apr-2015)
Ref
Expression
Hypotheses
lspindp3.v
⊢
V
=
Base
W
lspindp3.p
⊢
+
˙
=
+
W
lspindp3.o
⊢
0
˙
=
0
W
lspindp3.n
⊢
N
=
LSpan
⁡
W
lspindp3.w
⊢
φ
→
W
∈
LVec
lspindp3.x
⊢
φ
→
X
∈
V
lspindp3.y
⊢
φ
→
Y
∈
V
∖
0
˙
lspindp3.e
⊢
φ
→
N
⁡
X
≠
N
⁡
Y
Assertion
lspindp3
⊢
φ
→
N
⁡
X
≠
N
⁡
X
+
˙
Y
Proof
Step
Hyp
Ref
Expression
1
lspindp3.v
⊢
V
=
Base
W
2
lspindp3.p
⊢
+
˙
=
+
W
3
lspindp3.o
⊢
0
˙
=
0
W
4
lspindp3.n
⊢
N
=
LSpan
⁡
W
5
lspindp3.w
⊢
φ
→
W
∈
LVec
6
lspindp3.x
⊢
φ
→
X
∈
V
7
lspindp3.y
⊢
φ
→
Y
∈
V
∖
0
˙
8
lspindp3.e
⊢
φ
→
N
⁡
X
≠
N
⁡
Y
9
5
adantr
⊢
φ
∧
N
⁡
X
=
N
⁡
X
+
˙
Y
→
W
∈
LVec
10
6
adantr
⊢
φ
∧
N
⁡
X
=
N
⁡
X
+
˙
Y
→
X
∈
V
11
7
adantr
⊢
φ
∧
N
⁡
X
=
N
⁡
X
+
˙
Y
→
Y
∈
V
∖
0
˙
12
simpr
⊢
φ
∧
N
⁡
X
=
N
⁡
X
+
˙
Y
→
N
⁡
X
=
N
⁡
X
+
˙
Y
13
1
2
3
4
9
10
11
12
lspabs2
⊢
φ
∧
N
⁡
X
=
N
⁡
X
+
˙
Y
→
N
⁡
X
=
N
⁡
Y
14
13
ex
⊢
φ
→
N
⁡
X
=
N
⁡
X
+
˙
Y
→
N
⁡
X
=
N
⁡
Y
15
14
necon3d
⊢
φ
→
N
⁡
X
≠
N
⁡
Y
→
N
⁡
X
≠
N
⁡
X
+
˙
Y
16
8
15
mpd
⊢
φ
→
N
⁡
X
≠
N
⁡
X
+
˙
Y