Metamath Proof Explorer


Theorem lspindp3

Description: Independence of 2 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)

Ref Expression
Hypotheses lspindp3.v V = Base W
lspindp3.p + ˙ = + W
lspindp3.o 0 ˙ = 0 W
lspindp3.n N = LSpan W
lspindp3.w φ W LVec
lspindp3.x φ X V
lspindp3.y φ Y V 0 ˙
lspindp3.e φ N X N Y
Assertion lspindp3 φ N X N X + ˙ Y

Proof

Step Hyp Ref Expression
1 lspindp3.v V = Base W
2 lspindp3.p + ˙ = + W
3 lspindp3.o 0 ˙ = 0 W
4 lspindp3.n N = LSpan W
5 lspindp3.w φ W LVec
6 lspindp3.x φ X V
7 lspindp3.y φ Y V 0 ˙
8 lspindp3.e φ N X N Y
9 5 adantr φ N X = N X + ˙ Y W LVec
10 6 adantr φ N X = N X + ˙ Y X V
11 7 adantr φ N X = N X + ˙ Y Y V 0 ˙
12 simpr φ N X = N X + ˙ Y N X = N X + ˙ Y
13 1 2 3 4 9 10 11 12 lspabs2 φ N X = N X + ˙ Y N X = N Y
14 13 ex φ N X = N X + ˙ Y N X = N Y
15 14 necon3d φ N X N Y N X N X + ˙ Y
16 8 15 mpd φ N X N X + ˙ Y