Metamath Proof Explorer


Theorem lspindp4

Description: (Partial) independence of 3 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)

Ref Expression
Hypotheses lspindp3.v V = Base W
lspindp3.p + ˙ = + W
lspindp4.n N = LSpan W
lspindp4.w φ W LMod
lspindp4.x φ X V
lspindp4.y φ Y V
lspindp4.z φ Z V
lspindp4.e φ ¬ Z N X Y
Assertion lspindp4 φ ¬ Z N X X + ˙ Y

Proof

Step Hyp Ref Expression
1 lspindp3.v V = Base W
2 lspindp3.p + ˙ = + W
3 lspindp4.n N = LSpan W
4 lspindp4.w φ W LMod
5 lspindp4.x φ X V
6 lspindp4.y φ Y V
7 lspindp4.z φ Z V
8 lspindp4.e φ ¬ Z N X Y
9 1 2 3 4 5 6 lspprabs φ N X X + ˙ Y = N X Y
10 8 9 neleqtrrd φ ¬ Z N X X + ˙ Y