Metamath Proof Explorer


Theorem lsppr0

Description: The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014)

Ref Expression
Hypotheses lsppr0.v V = Base W
lsppr0.z 0 ˙ = 0 W
lsppr0.n N = LSpan W
lsppr0.w φ W LMod
lsppr0.x φ X V
Assertion lsppr0 φ N X 0 ˙ = N X

Proof

Step Hyp Ref Expression
1 lsppr0.v V = Base W
2 lsppr0.z 0 ˙ = 0 W
3 lsppr0.n N = LSpan W
4 lsppr0.w φ W LMod
5 lsppr0.x φ X V
6 eqid LSSum W = LSSum W
7 1 2 lmod0vcl W LMod 0 ˙ V
8 4 7 syl φ 0 ˙ V
9 1 3 6 4 5 8 lsmpr φ N X 0 ˙ = N X LSSum W N 0 ˙
10 2 3 lspsn0 W LMod N 0 ˙ = 0 ˙
11 4 10 syl φ N 0 ˙ = 0 ˙
12 11 oveq2d φ N X LSSum W N 0 ˙ = N X LSSum W 0 ˙
13 1 3 lspsnsubg W LMod X V N X SubGrp W
14 4 5 13 syl2anc φ N X SubGrp W
15 2 6 lsm01 N X SubGrp W N X LSSum W 0 ˙ = N X
16 14 15 syl φ N X LSSum W 0 ˙ = N X
17 9 12 16 3eqtrd φ N X 0 ˙ = N X