Step |
Hyp |
Ref |
Expression |
1 |
|
lspprabs.v |
|
2 |
|
lspprabs.p |
|
3 |
|
lspprabs.n |
|
4 |
|
lspprabs.w |
|
5 |
|
lspprabs.x |
|
6 |
|
lspprabs.y |
|
7 |
|
eqid |
|
8 |
7
|
lsssssubg |
|
9 |
4 8
|
syl |
|
10 |
1 7 3
|
lspsncl |
|
11 |
4 5 10
|
syl2anc |
|
12 |
9 11
|
sseldd |
|
13 |
1 7 3
|
lspsncl |
|
14 |
4 6 13
|
syl2anc |
|
15 |
9 14
|
sseldd |
|
16 |
|
eqid |
|
17 |
16
|
lsmub1 |
|
18 |
12 15 17
|
syl2anc |
|
19 |
7 16
|
lsmcl |
|
20 |
4 11 14 19
|
syl3anc |
|
21 |
1 3
|
lspsnid |
|
22 |
4 5 21
|
syl2anc |
|
23 |
1 3
|
lspsnid |
|
24 |
4 6 23
|
syl2anc |
|
25 |
2 16
|
lsmelvali |
|
26 |
12 15 22 24 25
|
syl22anc |
|
27 |
7 3 4 20 26
|
lspsnel5a |
|
28 |
1 2
|
lmodvacl |
|
29 |
4 5 6 28
|
syl3anc |
|
30 |
1 7 3
|
lspsncl |
|
31 |
4 29 30
|
syl2anc |
|
32 |
9 31
|
sseldd |
|
33 |
9 20
|
sseldd |
|
34 |
16
|
lsmlub |
|
35 |
12 32 33 34
|
syl3anc |
|
36 |
18 27 35
|
mpbi2and |
|
37 |
16
|
lsmub1 |
|
38 |
12 32 37
|
syl2anc |
|
39 |
7 16
|
lsmcl |
|
40 |
4 11 31 39
|
syl3anc |
|
41 |
|
eqid |
|
42 |
1 3
|
lspsnid |
|
43 |
4 29 42
|
syl2anc |
|
44 |
41 16 32 12 43 22
|
lsmelvalmi |
|
45 |
|
lmodabl |
|
46 |
4 45
|
syl |
|
47 |
1 2 41
|
ablpncan2 |
|
48 |
46 5 6 47
|
syl3anc |
|
49 |
16
|
lsmcom |
|
50 |
46 32 12 49
|
syl3anc |
|
51 |
44 48 50
|
3eltr3d |
|
52 |
7 3 4 40 51
|
lspsnel5a |
|
53 |
9 40
|
sseldd |
|
54 |
16
|
lsmlub |
|
55 |
12 15 53 54
|
syl3anc |
|
56 |
38 52 55
|
mpbi2and |
|
57 |
36 56
|
eqssd |
|
58 |
1 3 16 4 5 29
|
lsmpr |
|
59 |
1 3 16 4 5 6
|
lsmpr |
|
60 |
57 58 59
|
3eqtr4d |
|