| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspprat.v |
|
| 2 |
|
lspprat.s |
|
| 3 |
|
lspprat.n |
|
| 4 |
|
lspprat.w |
|
| 5 |
|
lspprat.u |
|
| 6 |
|
lspprat.x |
|
| 7 |
|
lspprat.y |
|
| 8 |
|
lspprat.p |
|
| 9 |
|
lsppratlem1.o |
|
| 10 |
|
lsppratlem1.x2 |
|
| 11 |
|
lsppratlem1.y2 |
|
| 12 |
|
lsppratlem3.x3 |
|
| 13 |
|
lveclmod |
|
| 14 |
4 13
|
syl |
|
| 15 |
7
|
snssd |
|
| 16 |
1 3
|
lspssv |
|
| 17 |
14 15 16
|
syl2anc |
|
| 18 |
17 12
|
sseldd |
|
| 19 |
18
|
snssd |
|
| 20 |
8
|
pssssd |
|
| 21 |
6
|
snssd |
|
| 22 |
19 21
|
unssd |
|
| 23 |
1 2 3
|
lspcl |
|
| 24 |
14 22 23
|
syl2anc |
|
| 25 |
|
df-pr |
|
| 26 |
1 3
|
lspssid |
|
| 27 |
14 22 26
|
syl2anc |
|
| 28 |
27
|
unssbd |
|
| 29 |
|
ssun1 |
|
| 30 |
29
|
a1i |
|
| 31 |
1 3
|
lspss |
|
| 32 |
14 22 30 31
|
syl3anc |
|
| 33 |
|
0ss |
|
| 34 |
33
|
a1i |
|
| 35 |
|
uncom |
|
| 36 |
|
un0 |
|
| 37 |
35 36
|
eqtri |
|
| 38 |
37
|
fveq2i |
|
| 39 |
12 38
|
eleqtrrdi |
|
| 40 |
10
|
eldifbd |
|
| 41 |
9 3
|
lsp0 |
|
| 42 |
14 41
|
syl |
|
| 43 |
40 42
|
neleqtrrd |
|
| 44 |
39 43
|
eldifd |
|
| 45 |
1 2 3
|
lspsolv |
|
| 46 |
4 34 7 44 45
|
syl13anc |
|
| 47 |
|
uncom |
|
| 48 |
|
un0 |
|
| 49 |
47 48
|
eqtri |
|
| 50 |
49
|
fveq2i |
|
| 51 |
46 50
|
eleqtrdi |
|
| 52 |
32 51
|
sseldd |
|
| 53 |
52
|
snssd |
|
| 54 |
28 53
|
unssd |
|
| 55 |
25 54
|
eqsstrid |
|
| 56 |
2 3
|
lspssp |
|
| 57 |
14 24 55 56
|
syl3anc |
|
| 58 |
20 57
|
sstrd |
|
| 59 |
58
|
ssdifd |
|
| 60 |
59 11
|
sseldd |
|
| 61 |
1 2 3
|
lspsolv |
|
| 62 |
4 19 6 60 61
|
syl13anc |
|
| 63 |
|
df-pr |
|
| 64 |
63
|
fveq2i |
|
| 65 |
62 64
|
eleqtrrdi |
|
| 66 |
1 2
|
lssss |
|
| 67 |
5 66
|
syl |
|
| 68 |
67
|
ssdifssd |
|
| 69 |
68 11
|
sseldd |
|
| 70 |
18 69
|
prssd |
|
| 71 |
|
snsspr1 |
|
| 72 |
71
|
a1i |
|
| 73 |
1 3
|
lspss |
|
| 74 |
14 70 72 73
|
syl3anc |
|
| 75 |
74 51
|
sseldd |
|
| 76 |
65 75
|
jca |
|