Metamath Proof Explorer


Theorem lspprcl

Description: The span of a pair is a subspace (frequently used special case of lspcl ). (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses lspval.v V=BaseW
lspval.s S=LSubSpW
lspval.n N=LSpanW
lspprcl.w φWLMod
lspprcl.x φXV
lspprcl.y φYV
Assertion lspprcl φNXYS

Proof

Step Hyp Ref Expression
1 lspval.v V=BaseW
2 lspval.s S=LSubSpW
3 lspval.n N=LSpanW
4 lspprcl.w φWLMod
5 lspprcl.x φXV
6 lspprcl.y φYV
7 5 6 prssd φXYV
8 1 2 3 lspcl WLModXYVNXYS
9 4 7 8 syl2anc φNXYS