Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
lspprid1
Next ⟩
lspprid2
Metamath Proof Explorer
Ascii
Unicode
Theorem
lspprid1
Description:
A member of a pair of vectors belongs to their span.
(Contributed by
NM
, 14-May-2015)
Ref
Expression
Hypotheses
lspprid.v
⊢
V
=
Base
W
lspprid.n
⊢
N
=
LSpan
⁡
W
lspprid.w
⊢
φ
→
W
∈
LMod
lspprid.x
⊢
φ
→
X
∈
V
lspprid.y
⊢
φ
→
Y
∈
V
Assertion
lspprid1
⊢
φ
→
X
∈
N
⁡
X
Y
Proof
Step
Hyp
Ref
Expression
1
lspprid.v
⊢
V
=
Base
W
2
lspprid.n
⊢
N
=
LSpan
⁡
W
3
lspprid.w
⊢
φ
→
W
∈
LMod
4
lspprid.x
⊢
φ
→
X
∈
V
5
lspprid.y
⊢
φ
→
Y
∈
V
6
4
5
prssd
⊢
φ
→
X
Y
⊆
V
7
snsspr1
⊢
X
⊆
X
Y
8
7
a1i
⊢
φ
→
X
⊆
X
Y
9
1
2
lspss
⊢
W
∈
LMod
∧
X
Y
⊆
V
∧
X
⊆
X
Y
→
N
⁡
X
⊆
N
⁡
X
Y
10
3
6
8
9
syl3anc
⊢
φ
→
N
⁡
X
⊆
N
⁡
X
Y
11
eqid
⊢
LSubSp
⁡
W
=
LSubSp
⁡
W
12
1
11
2
3
4
5
lspprcl
⊢
φ
→
N
⁡
X
Y
∈
LSubSp
⁡
W
13
1
11
2
3
12
4
lspsnel5
⊢
φ
→
X
∈
N
⁡
X
Y
↔
N
⁡
X
⊆
N
⁡
X
Y
14
10
13
mpbird
⊢
φ
→
X
∈
N
⁡
X
Y