Metamath Proof Explorer


Theorem lspprss

Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lspprss.s S = LSubSp W
lspprss.n N = LSpan W
lspprss.w φ W LMod
lspprss.u φ U S
lspprss.x φ X U
lspprss.y φ Y U
Assertion lspprss φ N X Y U

Proof

Step Hyp Ref Expression
1 lspprss.s S = LSubSp W
2 lspprss.n N = LSpan W
3 lspprss.w φ W LMod
4 lspprss.u φ U S
5 lspprss.x φ X U
6 lspprss.y φ Y U
7 5 6 prssd φ X Y U
8 1 2 lspssp W LMod U S X Y U N X Y U
9 3 4 7 8 syl3anc φ N X Y U