Metamath Proof Explorer


Theorem lspsnat

Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). ( h1datomi analog.) (Contributed by NM, 20-Apr-2014) (Proof shortened by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses lspsnat.v V = Base W
lspsnat.z 0 ˙ = 0 W
lspsnat.s S = LSubSp W
lspsnat.n N = LSpan W
Assertion lspsnat W LVec U S X V U N X U = N X U = 0 ˙

Proof

Step Hyp Ref Expression
1 lspsnat.v V = Base W
2 lspsnat.z 0 ˙ = 0 W
3 lspsnat.s S = LSubSp W
4 lspsnat.n N = LSpan W
5 n0 U 0 ˙ x x U 0 ˙
6 simprl W LVec U S X V U N X x U 0 ˙ U N X
7 simpl1 W LVec U S X V U N X x U 0 ˙ W LVec
8 lveclmod W LVec W LMod
9 7 8 syl W LVec U S X V U N X x U 0 ˙ W LMod
10 simpl2 W LVec U S X V U N X x U 0 ˙ U S
11 simprr W LVec U S X V U N X x U 0 ˙ x U 0 ˙
12 11 eldifad W LVec U S X V U N X x U 0 ˙ x U
13 3 4 9 10 12 lspsnel5a W LVec U S X V U N X x U 0 ˙ N x U
14 0ss V
15 14 a1i W LVec U S X V U N X x U 0 ˙ V
16 simpl3 W LVec U S X V U N X x U 0 ˙ X V
17 ssdif U N X U 0 ˙ N X 0 ˙
18 17 ad2antrl W LVec U S X V U N X x U 0 ˙ U 0 ˙ N X 0 ˙
19 18 11 sseldd W LVec U S X V U N X x U 0 ˙ x N X 0 ˙
20 uncom X = X
21 un0 X = X
22 20 21 eqtri X = X
23 22 fveq2i N X = N X
24 23 a1i W LVec U S X V U N X x U 0 ˙ N X = N X
25 2 4 lsp0 W LMod N = 0 ˙
26 9 25 syl W LVec U S X V U N X x U 0 ˙ N = 0 ˙
27 24 26 difeq12d W LVec U S X V U N X x U 0 ˙ N X N = N X 0 ˙
28 19 27 eleqtrrd W LVec U S X V U N X x U 0 ˙ x N X N
29 1 3 4 lspsolv W LVec V X V x N X N X N x
30 7 15 16 28 29 syl13anc W LVec U S X V U N X x U 0 ˙ X N x
31 uncom x = x
32 un0 x = x
33 31 32 eqtri x = x
34 33 fveq2i N x = N x
35 30 34 eleqtrdi W LVec U S X V U N X x U 0 ˙ X N x
36 13 35 sseldd W LVec U S X V U N X x U 0 ˙ X U
37 3 4 9 10 36 lspsnel5a W LVec U S X V U N X x U 0 ˙ N X U
38 6 37 eqssd W LVec U S X V U N X x U 0 ˙ U = N X
39 38 expr W LVec U S X V U N X x U 0 ˙ U = N X
40 39 exlimdv W LVec U S X V U N X x x U 0 ˙ U = N X
41 5 40 syl5bi W LVec U S X V U N X U 0 ˙ U = N X
42 41 necon1bd W LVec U S X V U N X ¬ U = N X U 0 ˙ =
43 ssdif0 U 0 ˙ U 0 ˙ =
44 42 43 syl6ibr W LVec U S X V U N X ¬ U = N X U 0 ˙
45 simpl1 W LVec U S X V U N X W LVec
46 45 8 syl W LVec U S X V U N X W LMod
47 simpl2 W LVec U S X V U N X U S
48 2 3 lssle0 W LMod U S U 0 ˙ U = 0 ˙
49 46 47 48 syl2anc W LVec U S X V U N X U 0 ˙ U = 0 ˙
50 44 49 sylibd W LVec U S X V U N X ¬ U = N X U = 0 ˙
51 50 orrd W LVec U S X V U N X U = N X U = 0 ˙