Step |
Hyp |
Ref |
Expression |
1 |
|
lspsnat.v |
|
2 |
|
lspsnat.z |
|
3 |
|
lspsnat.s |
|
4 |
|
lspsnat.n |
|
5 |
|
n0 |
|
6 |
|
simprl |
|
7 |
|
simpl1 |
|
8 |
|
lveclmod |
|
9 |
7 8
|
syl |
|
10 |
|
simpl2 |
|
11 |
|
simprr |
|
12 |
11
|
eldifad |
|
13 |
3 4 9 10 12
|
lspsnel5a |
|
14 |
|
0ss |
|
15 |
14
|
a1i |
|
16 |
|
simpl3 |
|
17 |
|
ssdif |
|
18 |
17
|
ad2antrl |
|
19 |
18 11
|
sseldd |
|
20 |
|
uncom |
|
21 |
|
un0 |
|
22 |
20 21
|
eqtri |
|
23 |
22
|
fveq2i |
|
24 |
23
|
a1i |
|
25 |
2 4
|
lsp0 |
|
26 |
9 25
|
syl |
|
27 |
24 26
|
difeq12d |
|
28 |
19 27
|
eleqtrrd |
|
29 |
1 3 4
|
lspsolv |
|
30 |
7 15 16 28 29
|
syl13anc |
|
31 |
|
uncom |
|
32 |
|
un0 |
|
33 |
31 32
|
eqtri |
|
34 |
33
|
fveq2i |
|
35 |
30 34
|
eleqtrdi |
|
36 |
13 35
|
sseldd |
|
37 |
3 4 9 10 36
|
lspsnel5a |
|
38 |
6 37
|
eqssd |
|
39 |
38
|
expr |
|
40 |
39
|
exlimdv |
|
41 |
5 40
|
syl5bi |
|
42 |
41
|
necon1bd |
|
43 |
|
ssdif0 |
|
44 |
42 43
|
syl6ibr |
|
45 |
|
simpl1 |
|
46 |
45 8
|
syl |
|
47 |
|
simpl2 |
|
48 |
2 3
|
lssle0 |
|
49 |
46 47 48
|
syl2anc |
|
50 |
44 49
|
sylibd |
|
51 |
50
|
orrd |
|