Metamath Proof Explorer


Theorem lspsnel6

Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lspsnel5.v V = Base W
lspsnel5.s S = LSubSp W
lspsnel5.n N = LSpan W
lspsnel5.w φ W LMod
lspsnel5.a φ U S
Assertion lspsnel6 φ X U X V N X U

Proof

Step Hyp Ref Expression
1 lspsnel5.v V = Base W
2 lspsnel5.s S = LSubSp W
3 lspsnel5.n N = LSpan W
4 lspsnel5.w φ W LMod
5 lspsnel5.a φ U S
6 1 2 lssel U S X U X V
7 5 6 sylan φ X U X V
8 4 adantr φ X U W LMod
9 5 adantr φ X U U S
10 simpr φ X U X U
11 2 3 lspsnss W LMod U S X U N X U
12 8 9 10 11 syl3anc φ X U N X U
13 7 12 jca φ X U X V N X U
14 1 3 lspsnid W LMod X V X N X
15 4 14 sylan φ X V X N X
16 ssel N X U X N X X U
17 15 16 syl5com φ X V N X U X U
18 17 impr φ X V N X U X U
19 13 18 impbida φ X U X V N X U