Metamath Proof Explorer


Theorem lspsneleq

Description: Membership relation that implies equality of spans. ( spansneleq analog.) (Contributed by NM, 4-Jul-2014)

Ref Expression
Hypotheses lspsneleq.v V = Base W
lspsneleq.o 0 ˙ = 0 W
lspsneleq.n N = LSpan W
lspsneleq.w φ W LVec
lspsneleq.x φ X V
lspsneleq.y φ Y N X
lspsneleq.z φ Y 0 ˙
Assertion lspsneleq φ N Y = N X

Proof

Step Hyp Ref Expression
1 lspsneleq.v V = Base W
2 lspsneleq.o 0 ˙ = 0 W
3 lspsneleq.n N = LSpan W
4 lspsneleq.w φ W LVec
5 lspsneleq.x φ X V
6 lspsneleq.y φ Y N X
7 lspsneleq.z φ Y 0 ˙
8 lveclmod W LVec W LMod
9 4 8 syl φ W LMod
10 eqid Scalar W = Scalar W
11 eqid Base Scalar W = Base Scalar W
12 eqid W = W
13 10 11 1 12 3 lspsnel W LMod X V Y N X k Base Scalar W Y = k W X
14 9 5 13 syl2anc φ Y N X k Base Scalar W Y = k W X
15 simpr φ k Base Scalar W Y = k W X Y = k W X
16 15 sneqd φ k Base Scalar W Y = k W X Y = k W X
17 16 fveq2d φ k Base Scalar W Y = k W X N Y = N k W X
18 4 ad2antrr φ k Base Scalar W Y = k W X W LVec
19 simplr φ k Base Scalar W Y = k W X k Base Scalar W
20 7 ad2antrr φ k Base Scalar W Y = k W X Y 0 ˙
21 simplr φ k Base Scalar W Y = k W X k = 0 Scalar W Y = k W X
22 simpr φ k Base Scalar W Y = k W X k = 0 Scalar W k = 0 Scalar W
23 22 oveq1d φ k Base Scalar W Y = k W X k = 0 Scalar W k W X = 0 Scalar W W X
24 eqid 0 Scalar W = 0 Scalar W
25 1 10 12 24 2 lmod0vs W LMod X V 0 Scalar W W X = 0 ˙
26 9 5 25 syl2anc φ 0 Scalar W W X = 0 ˙
27 26 ad3antrrr φ k Base Scalar W Y = k W X k = 0 Scalar W 0 Scalar W W X = 0 ˙
28 21 23 27 3eqtrd φ k Base Scalar W Y = k W X k = 0 Scalar W Y = 0 ˙
29 28 ex φ k Base Scalar W Y = k W X k = 0 Scalar W Y = 0 ˙
30 29 necon3d φ k Base Scalar W Y = k W X Y 0 ˙ k 0 Scalar W
31 20 30 mpd φ k Base Scalar W Y = k W X k 0 Scalar W
32 5 ad2antrr φ k Base Scalar W Y = k W X X V
33 1 10 12 11 24 3 lspsnvs W LVec k Base Scalar W k 0 Scalar W X V N k W X = N X
34 18 19 31 32 33 syl121anc φ k Base Scalar W Y = k W X N k W X = N X
35 17 34 eqtrd φ k Base Scalar W Y = k W X N Y = N X
36 35 rexlimdva2 φ k Base Scalar W Y = k W X N Y = N X
37 14 36 sylbid φ Y N X N Y = N X
38 6 37 mpd φ N Y = N X