Step |
Hyp |
Ref |
Expression |
1 |
|
lspsneq.v |
|
2 |
|
lspsneq.s |
|
3 |
|
lspsneq.k |
|
4 |
|
lspsneq.o |
|
5 |
|
lspsneq.t |
|
6 |
|
lspsneq.n |
|
7 |
|
lspsneq.w |
|
8 |
|
lspsneq.x |
|
9 |
|
lspsneq.y |
|
10 |
|
lveclmod |
|
11 |
7 10
|
syl |
|
12 |
2
|
lmodring |
|
13 |
|
eqid |
|
14 |
3 13
|
ringidcl |
|
15 |
11 12 14
|
3syl |
|
16 |
2
|
lvecdrng |
|
17 |
4 13
|
drngunz |
|
18 |
7 16 17
|
3syl |
|
19 |
|
eldifsn |
|
20 |
15 18 19
|
sylanbrc |
|
21 |
20
|
ad2antrr |
|
22 |
|
eqid |
|
23 |
1 22
|
lmod0vcl |
|
24 |
1 2 5 13
|
lmodvs1 |
|
25 |
11 23 24
|
syl2anc2 |
|
26 |
25
|
ad2antrr |
|
27 |
|
oveq2 |
|
28 |
27
|
adantl |
|
29 |
11
|
adantr |
|
30 |
8
|
adantr |
|
31 |
9
|
adantr |
|
32 |
|
simpr |
|
33 |
1 22 6 29 30 31 32
|
lspsneq0b |
|
34 |
33
|
biimpar |
|
35 |
26 28 34
|
3eqtr4rd |
|
36 |
|
oveq1 |
|
37 |
36
|
rspceeqv |
|
38 |
21 35 37
|
syl2anc |
|
39 |
|
eqimss |
|
40 |
39
|
adantl |
|
41 |
|
eqid |
|
42 |
1 41 6
|
lspsncl |
|
43 |
11 9 42
|
syl2anc |
|
44 |
43
|
adantr |
|
45 |
1 41 6 29 44 30
|
lspsnel5 |
|
46 |
40 45
|
mpbird |
|
47 |
2 3 1 5 6
|
lspsnel |
|
48 |
29 31 47
|
syl2anc |
|
49 |
46 48
|
mpbid |
|
50 |
49
|
adantr |
|
51 |
|
simprl |
|
52 |
|
simpr |
|
53 |
52
|
adantl |
|
54 |
33
|
biimpd |
|
55 |
54
|
necon3d |
|
56 |
55
|
imp |
|
57 |
56
|
adantr |
|
58 |
53 57
|
eqnetrrd |
|
59 |
7
|
adantr |
|
60 |
59
|
ad2antrr |
|
61 |
31
|
ad2antrr |
|
62 |
1 5 2 3 4 22 60 51 61
|
lvecvsn0 |
|
63 |
58 62
|
mpbid |
|
64 |
63
|
simpld |
|
65 |
|
eldifsn |
|
66 |
51 64 65
|
sylanbrc |
|
67 |
50 66 53
|
reximssdv |
|
68 |
38 67
|
pm2.61dane |
|
69 |
68
|
ex |
|
70 |
7
|
adantr |
|
71 |
|
eldifi |
|
72 |
71
|
adantl |
|
73 |
|
eldifsni |
|
74 |
73
|
adantl |
|
75 |
9
|
adantr |
|
76 |
1 2 5 3 4 6
|
lspsnvs |
|
77 |
70 72 74 75 76
|
syl121anc |
|
78 |
77
|
ex |
|
79 |
|
sneq |
|
80 |
79
|
fveqeq2d |
|
81 |
80
|
biimprcd |
|
82 |
78 81
|
syl6 |
|
83 |
82
|
rexlimdv |
|
84 |
69 83
|
impbid |
|
85 |
|
oveq1 |
|
86 |
85
|
eqeq2d |
|
87 |
86
|
cbvrexvw |
|
88 |
84 87
|
bitrdi |
|