| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsneq.v |  | 
						
							| 2 |  | lspsneq.s |  | 
						
							| 3 |  | lspsneq.k |  | 
						
							| 4 |  | lspsneq.o |  | 
						
							| 5 |  | lspsneq.t |  | 
						
							| 6 |  | lspsneq.n |  | 
						
							| 7 |  | lspsneq.w |  | 
						
							| 8 |  | lspsneq.x |  | 
						
							| 9 |  | lspsneq.y |  | 
						
							| 10 |  | lveclmod |  | 
						
							| 11 | 7 10 | syl |  | 
						
							| 12 | 2 | lmodring |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 3 13 | ringidcl |  | 
						
							| 15 | 11 12 14 | 3syl |  | 
						
							| 16 | 2 | lvecdrng |  | 
						
							| 17 | 4 13 | drngunz |  | 
						
							| 18 | 7 16 17 | 3syl |  | 
						
							| 19 |  | eldifsn |  | 
						
							| 20 | 15 18 19 | sylanbrc |  | 
						
							| 21 | 20 | ad2antrr |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 1 22 | lmod0vcl |  | 
						
							| 24 | 1 2 5 13 | lmodvs1 |  | 
						
							| 25 | 11 23 24 | syl2anc2 |  | 
						
							| 26 | 25 | ad2antrr |  | 
						
							| 27 |  | oveq2 |  | 
						
							| 28 | 27 | adantl |  | 
						
							| 29 | 11 | adantr |  | 
						
							| 30 | 8 | adantr |  | 
						
							| 31 | 9 | adantr |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 1 22 6 29 30 31 32 | lspsneq0b |  | 
						
							| 34 | 33 | biimpar |  | 
						
							| 35 | 26 28 34 | 3eqtr4rd |  | 
						
							| 36 |  | oveq1 |  | 
						
							| 37 | 36 | rspceeqv |  | 
						
							| 38 | 21 35 37 | syl2anc |  | 
						
							| 39 |  | eqimss |  | 
						
							| 40 | 39 | adantl |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 | 1 41 6 | lspsncl |  | 
						
							| 43 | 11 9 42 | syl2anc |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 1 41 6 29 44 30 | ellspsn5b |  | 
						
							| 46 | 40 45 | mpbird |  | 
						
							| 47 | 2 3 1 5 6 | ellspsn |  | 
						
							| 48 | 29 31 47 | syl2anc |  | 
						
							| 49 | 46 48 | mpbid |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 |  | simprl |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 | 52 | adantl |  | 
						
							| 54 | 33 | biimpd |  | 
						
							| 55 | 54 | necon3d |  | 
						
							| 56 | 55 | imp |  | 
						
							| 57 | 56 | adantr |  | 
						
							| 58 | 53 57 | eqnetrrd |  | 
						
							| 59 | 7 | adantr |  | 
						
							| 60 | 59 | ad2antrr |  | 
						
							| 61 | 31 | ad2antrr |  | 
						
							| 62 | 1 5 2 3 4 22 60 51 61 | lvecvsn0 |  | 
						
							| 63 | 58 62 | mpbid |  | 
						
							| 64 | 63 | simpld |  | 
						
							| 65 |  | eldifsn |  | 
						
							| 66 | 51 64 65 | sylanbrc |  | 
						
							| 67 | 50 66 53 | reximssdv |  | 
						
							| 68 | 38 67 | pm2.61dane |  | 
						
							| 69 | 68 | ex |  | 
						
							| 70 | 7 | adantr |  | 
						
							| 71 |  | eldifi |  | 
						
							| 72 | 71 | adantl |  | 
						
							| 73 |  | eldifsni |  | 
						
							| 74 | 73 | adantl |  | 
						
							| 75 | 9 | adantr |  | 
						
							| 76 | 1 2 5 3 4 6 | lspsnvs |  | 
						
							| 77 | 70 72 74 75 76 | syl121anc |  | 
						
							| 78 | 77 | ex |  | 
						
							| 79 |  | sneq |  | 
						
							| 80 | 79 | fveqeq2d |  | 
						
							| 81 | 80 | biimprcd |  | 
						
							| 82 | 78 81 | syl6 |  | 
						
							| 83 | 82 | rexlimdv |  | 
						
							| 84 | 69 83 | impbid |  | 
						
							| 85 |  | oveq1 |  | 
						
							| 86 | 85 | eqeq2d |  | 
						
							| 87 | 86 | cbvrexvw |  | 
						
							| 88 | 84 87 | bitrdi |  |