Metamath Proof Explorer


Theorem lspsnid

Description: A vector belongs to the span of its singleton. ( spansnid analog.) (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspsnid.v V = Base W
lspsnid.n N = LSpan W
Assertion lspsnid W LMod X V X N X

Proof

Step Hyp Ref Expression
1 lspsnid.v V = Base W
2 lspsnid.n N = LSpan W
3 snssi X V X V
4 1 2 lspssid W LMod X V X N X
5 3 4 sylan2 W LMod X V X N X
6 snssg X V X N X X N X
7 6 adantl W LMod X V X N X X N X
8 5 7 mpbird W LMod X V X N X