Metamath Proof Explorer


Theorem lspsnne2

Description: Two ways to express that vectors have different spans. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lspsnne2.v V = Base W
lspsnne2.n N = LSpan W
lspsnne2.w φ W LMod
lspsnne2.x φ X V
lspsnne2.y φ Y V
lspsnne2.e φ ¬ X N Y
Assertion lspsnne2 φ N X N Y

Proof

Step Hyp Ref Expression
1 lspsnne2.v V = Base W
2 lspsnne2.n N = LSpan W
3 lspsnne2.w φ W LMod
4 lspsnne2.x φ X V
5 lspsnne2.y φ Y V
6 lspsnne2.e φ ¬ X N Y
7 eqimss N X = N Y N X N Y
8 eqid LSubSp W = LSubSp W
9 1 8 2 lspsncl W LMod Y V N Y LSubSp W
10 3 5 9 syl2anc φ N Y LSubSp W
11 1 8 2 3 10 4 lspsnel5 φ X N Y N X N Y
12 7 11 syl5ibr φ N X = N Y X N Y
13 12 necon3bd φ ¬ X N Y N X N Y
14 6 13 mpd φ N X N Y