Database
BASIC ALGEBRAIC STRUCTURES
Vector spaces
Definition and basic properties
lspsnne2
Next ⟩
lspsnnecom
Metamath Proof Explorer
Ascii
Unicode
Theorem
lspsnne2
Description:
Two ways to express that vectors have different spans.
(Contributed by
NM
, 20-May-2015)
Ref
Expression
Hypotheses
lspsnne2.v
⊢
V
=
Base
W
lspsnne2.n
⊢
N
=
LSpan
⁡
W
lspsnne2.w
⊢
φ
→
W
∈
LMod
lspsnne2.x
⊢
φ
→
X
∈
V
lspsnne2.y
⊢
φ
→
Y
∈
V
lspsnne2.e
⊢
φ
→
¬
X
∈
N
⁡
Y
Assertion
lspsnne2
⊢
φ
→
N
⁡
X
≠
N
⁡
Y
Proof
Step
Hyp
Ref
Expression
1
lspsnne2.v
⊢
V
=
Base
W
2
lspsnne2.n
⊢
N
=
LSpan
⁡
W
3
lspsnne2.w
⊢
φ
→
W
∈
LMod
4
lspsnne2.x
⊢
φ
→
X
∈
V
5
lspsnne2.y
⊢
φ
→
Y
∈
V
6
lspsnne2.e
⊢
φ
→
¬
X
∈
N
⁡
Y
7
eqimss
⊢
N
⁡
X
=
N
⁡
Y
→
N
⁡
X
⊆
N
⁡
Y
8
eqid
⊢
LSubSp
⁡
W
=
LSubSp
⁡
W
9
1
8
2
lspsncl
⊢
W
∈
LMod
∧
Y
∈
V
→
N
⁡
Y
∈
LSubSp
⁡
W
10
3
5
9
syl2anc
⊢
φ
→
N
⁡
Y
∈
LSubSp
⁡
W
11
1
8
2
3
10
4
lspsnel5
⊢
φ
→
X
∈
N
⁡
Y
↔
N
⁡
X
⊆
N
⁡
Y
12
7
11
syl5ibr
⊢
φ
→
N
⁡
X
=
N
⁡
Y
→
X
∈
N
⁡
Y
13
12
necon3bd
⊢
φ
→
¬
X
∈
N
⁡
Y
→
N
⁡
X
≠
N
⁡
Y
14
6
13
mpd
⊢
φ
→
N
⁡
X
≠
N
⁡
Y