Metamath Proof Explorer


Theorem lspsnnecom

Description: Swap two vectors with different spans. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lspsnnecom.v V = Base W
lspsnnecom.o 0 ˙ = 0 W
lspsnnecom.n N = LSpan W
lspsnnecom.w φ W LVec
lspsnnecom.x φ X V
lspsnnecom.y φ Y V 0 ˙
lspsnnecom.e φ ¬ X N Y
Assertion lspsnnecom φ ¬ Y N X

Proof

Step Hyp Ref Expression
1 lspsnnecom.v V = Base W
2 lspsnnecom.o 0 ˙ = 0 W
3 lspsnnecom.n N = LSpan W
4 lspsnnecom.w φ W LVec
5 lspsnnecom.x φ X V
6 lspsnnecom.y φ Y V 0 ˙
7 lspsnnecom.e φ ¬ X N Y
8 lveclmod W LVec W LMod
9 4 8 syl φ W LMod
10 6 eldifad φ Y V
11 1 3 9 5 10 7 lspsnne2 φ N X N Y
12 11 necomd φ N Y N X
13 1 2 3 4 6 5 12 lspsnne1 φ ¬ Y N X