Database
BASIC ALGEBRAIC STRUCTURES
Vector spaces
Definition and basic properties
lspsnnecom
Next ⟩
lspabs2
Metamath Proof Explorer
Ascii
Unicode
Theorem
lspsnnecom
Description:
Swap two vectors with different spans.
(Contributed by
NM
, 20-May-2015)
Ref
Expression
Hypotheses
lspsnnecom.v
⊢
V
=
Base
W
lspsnnecom.o
⊢
0
˙
=
0
W
lspsnnecom.n
⊢
N
=
LSpan
⁡
W
lspsnnecom.w
⊢
φ
→
W
∈
LVec
lspsnnecom.x
⊢
φ
→
X
∈
V
lspsnnecom.y
⊢
φ
→
Y
∈
V
∖
0
˙
lspsnnecom.e
⊢
φ
→
¬
X
∈
N
⁡
Y
Assertion
lspsnnecom
⊢
φ
→
¬
Y
∈
N
⁡
X
Proof
Step
Hyp
Ref
Expression
1
lspsnnecom.v
⊢
V
=
Base
W
2
lspsnnecom.o
⊢
0
˙
=
0
W
3
lspsnnecom.n
⊢
N
=
LSpan
⁡
W
4
lspsnnecom.w
⊢
φ
→
W
∈
LVec
5
lspsnnecom.x
⊢
φ
→
X
∈
V
6
lspsnnecom.y
⊢
φ
→
Y
∈
V
∖
0
˙
7
lspsnnecom.e
⊢
φ
→
¬
X
∈
N
⁡
Y
8
lveclmod
⊢
W
∈
LVec
→
W
∈
LMod
9
4
8
syl
⊢
φ
→
W
∈
LMod
10
6
eldifad
⊢
φ
→
Y
∈
V
11
1
3
9
5
10
7
lspsnne2
⊢
φ
→
N
⁡
X
≠
N
⁡
Y
12
11
necomd
⊢
φ
→
N
⁡
Y
≠
N
⁡
X
13
1
2
3
4
6
5
12
lspsnne1
⊢
φ
→
¬
Y
∈
N
⁡
X