Metamath Proof Explorer


Theorem lspsnss2

Description: Comparable spans of singletons must have proportional vectors. See lspsneq for equal span version. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses lspsnss2.v V = Base W
lspsnss2.s S = Scalar W
lspsnss2.k K = Base S
lspsnss2.t · ˙ = W
lspsnss2.n N = LSpan W
lspsnss2.w φ W LMod
lspsnss2.x φ X V
lspsnss2.y φ Y V
Assertion lspsnss2 φ N X N Y k K X = k · ˙ Y

Proof

Step Hyp Ref Expression
1 lspsnss2.v V = Base W
2 lspsnss2.s S = Scalar W
3 lspsnss2.k K = Base S
4 lspsnss2.t · ˙ = W
5 lspsnss2.n N = LSpan W
6 lspsnss2.w φ W LMod
7 lspsnss2.x φ X V
8 lspsnss2.y φ Y V
9 eqid LSubSp W = LSubSp W
10 1 9 5 lspsncl W LMod Y V N Y LSubSp W
11 6 8 10 syl2anc φ N Y LSubSp W
12 1 9 5 6 11 7 lspsnel5 φ X N Y N X N Y
13 2 3 1 4 5 lspsnel W LMod Y V X N Y k K X = k · ˙ Y
14 6 8 13 syl2anc φ X N Y k K X = k · ˙ Y
15 12 14 bitr3d φ N X N Y k K X = k · ˙ Y