Metamath Proof Explorer


Theorem lspsnsub

Description: Swapping subtraction order does not change the span of a singleton. (Contributed by NM, 4-Apr-2015)

Ref Expression
Hypotheses lspsnsub.v V = Base W
lspsnsub.s - ˙ = - W
lspsnsub.n N = LSpan W
lspsnsub.w φ W LMod
lspsnsub.x φ X V
lspsnsub.y φ Y V
Assertion lspsnsub φ N X - ˙ Y = N Y - ˙ X

Proof

Step Hyp Ref Expression
1 lspsnsub.v V = Base W
2 lspsnsub.s - ˙ = - W
3 lspsnsub.n N = LSpan W
4 lspsnsub.w φ W LMod
5 lspsnsub.x φ X V
6 lspsnsub.y φ Y V
7 1 2 lmodvsubcl W LMod X V Y V X - ˙ Y V
8 4 5 6 7 syl3anc φ X - ˙ Y V
9 eqid inv g W = inv g W
10 1 9 3 lspsnneg W LMod X - ˙ Y V N inv g W X - ˙ Y = N X - ˙ Y
11 4 8 10 syl2anc φ N inv g W X - ˙ Y = N X - ˙ Y
12 lmodgrp W LMod W Grp
13 4 12 syl φ W Grp
14 1 2 9 grpinvsub W Grp X V Y V inv g W X - ˙ Y = Y - ˙ X
15 13 5 6 14 syl3anc φ inv g W X - ˙ Y = Y - ˙ X
16 15 sneqd φ inv g W X - ˙ Y = Y - ˙ X
17 16 fveq2d φ N inv g W X - ˙ Y = N Y - ˙ X
18 11 17 eqtr3d φ N X - ˙ Y = N Y - ˙ X