Metamath Proof Explorer


Theorem lspsnsubn0

Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015)

Ref Expression
Hypotheses lspsnsubn0.v V = Base W
lspsnsubn0.o 0 ˙ = 0 W
lspsnsubn0.m - ˙ = - W
lspsnsubn0.w φ W LMod
lspsnsubn0.x φ X V
lspsnsubn0.y φ Y V
lspsnsubn0.e φ N X N Y
Assertion lspsnsubn0 φ X - ˙ Y 0 ˙

Proof

Step Hyp Ref Expression
1 lspsnsubn0.v V = Base W
2 lspsnsubn0.o 0 ˙ = 0 W
3 lspsnsubn0.m - ˙ = - W
4 lspsnsubn0.w φ W LMod
5 lspsnsubn0.x φ X V
6 lspsnsubn0.y φ Y V
7 lspsnsubn0.e φ N X N Y
8 1 2 3 lmodsubeq0 W LMod X V Y V X - ˙ Y = 0 ˙ X = Y
9 4 5 6 8 syl3anc φ X - ˙ Y = 0 ˙ X = Y
10 sneq X = Y X = Y
11 10 fveq2d X = Y N X = N Y
12 9 11 syl6bi φ X - ˙ Y = 0 ˙ N X = N Y
13 12 necon3d φ N X N Y X - ˙ Y 0 ˙
14 7 13 mpd φ X - ˙ Y 0 ˙