Metamath Proof Explorer


Theorem lspsnvsi

Description: Span of a scalar product of a singleton. (Contributed by NM, 23-Apr-2014) (Proof shortened by Mario Carneiro, 4-Sep-2014)

Ref Expression
Hypotheses lspsn.f F = Scalar W
lspsn.k K = Base F
lspsn.v V = Base W
lspsn.t · ˙ = W
lspsn.n N = LSpan W
Assertion lspsnvsi W LMod R K X V N R · ˙ X N X

Proof

Step Hyp Ref Expression
1 lspsn.f F = Scalar W
2 lspsn.k K = Base F
3 lspsn.v V = Base W
4 lspsn.t · ˙ = W
5 lspsn.n N = LSpan W
6 eqid LSubSp W = LSubSp W
7 simp1 W LMod R K X V W LMod
8 simp3 W LMod R K X V X V
9 8 snssd W LMod R K X V X V
10 3 6 5 lspcl W LMod X V N X LSubSp W
11 7 9 10 syl2anc W LMod R K X V N X LSubSp W
12 simp2 W LMod R K X V R K
13 3 4 1 2 5 7 12 8 lspsneli W LMod R K X V R · ˙ X N X
14 6 5 7 11 13 lspsnel5a W LMod R K X V N R · ˙ X N X