| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsolv.v |
|
| 2 |
|
lspsolv.s |
|
| 3 |
|
lspsolv.n |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
lveclmod |
|
| 10 |
9
|
adantr |
|
| 11 |
|
simpr1 |
|
| 12 |
|
simpr2 |
|
| 13 |
|
simpr3 |
|
| 14 |
13
|
eldifad |
|
| 15 |
1 2 3 4 5 6 7 8 10 11 12 14
|
lspsolvlem |
|
| 16 |
4
|
lvecdrng |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
|
simprl |
|
| 19 |
10
|
adantr |
|
| 20 |
12
|
adantr |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
1 4 7 21 22
|
lmod0vs |
|
| 24 |
19 20 23
|
syl2anc |
|
| 25 |
24
|
oveq2d |
|
| 26 |
11
|
adantr |
|
| 27 |
20
|
snssd |
|
| 28 |
26 27
|
unssd |
|
| 29 |
1 3
|
lspssv |
|
| 30 |
19 28 29
|
syl2anc |
|
| 31 |
30
|
ssdifssd |
|
| 32 |
13
|
adantr |
|
| 33 |
31 32
|
sseldd |
|
| 34 |
1 6 22
|
lmod0vrid |
|
| 35 |
19 33 34
|
syl2anc |
|
| 36 |
25 35
|
eqtrd |
|
| 37 |
36 32
|
eqeltrd |
|
| 38 |
37
|
eldifbd |
|
| 39 |
|
simprr |
|
| 40 |
|
oveq1 |
|
| 41 |
40
|
oveq2d |
|
| 42 |
41
|
eleq1d |
|
| 43 |
39 42
|
syl5ibcom |
|
| 44 |
43
|
necon3bd |
|
| 45 |
38 44
|
mpd |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
5 21 46 47 48
|
drnginvrl |
|
| 50 |
17 18 45 49
|
syl3anc |
|
| 51 |
50
|
oveq1d |
|
| 52 |
5 21 48
|
drnginvrcl |
|
| 53 |
17 18 45 52
|
syl3anc |
|
| 54 |
1 4 7 5 46
|
lmodvsass |
|
| 55 |
19 53 18 20 54
|
syl13anc |
|
| 56 |
1 4 7 47
|
lmodvs1 |
|
| 57 |
19 20 56
|
syl2anc |
|
| 58 |
51 55 57
|
3eqtr3d |
|
| 59 |
33
|
snssd |
|
| 60 |
26 59
|
unssd |
|
| 61 |
1 2 3
|
lspcl |
|
| 62 |
19 60 61
|
syl2anc |
|
| 63 |
1 4 7 5
|
lmodvscl |
|
| 64 |
19 18 20 63
|
syl3anc |
|
| 65 |
|
eqid |
|
| 66 |
1 6 65
|
lmodvpncan |
|
| 67 |
19 64 33 66
|
syl3anc |
|
| 68 |
1 6
|
lmodcom |
|
| 69 |
19 64 33 68
|
syl3anc |
|
| 70 |
|
ssun1 |
|
| 71 |
70
|
a1i |
|
| 72 |
1 3
|
lspss |
|
| 73 |
19 60 71 72
|
syl3anc |
|
| 74 |
73 39
|
sseldd |
|
| 75 |
69 74
|
eqeltrd |
|
| 76 |
1 3
|
lspssid |
|
| 77 |
19 60 76
|
syl2anc |
|
| 78 |
|
snidg |
|
| 79 |
|
elun2 |
|
| 80 |
33 78 79
|
3syl |
|
| 81 |
77 80
|
sseldd |
|
| 82 |
65 2
|
lssvsubcl |
|
| 83 |
19 62 75 81 82
|
syl22anc |
|
| 84 |
67 83
|
eqeltrrd |
|
| 85 |
4 7 5 2
|
lssvscl |
|
| 86 |
19 62 53 84 85
|
syl22anc |
|
| 87 |
58 86
|
eqeltrrd |
|
| 88 |
15 87
|
rexlimddv |
|